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Abstract

Artificial Intelligence (AI) is rapidly becoming a cornerstone of modern society, yet its
exponential growth has introduced environmental concerns and sustainability challenges.
Training and deploying large-scale models requires immense computational power, leading to
substantial energy consumption and associated carbon emissions. This thesis explores the
concept of Sustainable AI through a multidisciplinary lens, integrating technical, economic,
and legal perspectives to examine how AI can be made more environmentally responsible
without hindering innovation. The technical perspective explores methods to improve
efficiency, including model compression, specialized hardware, software optimizations, and
energy-efficient data centre design. The legal perspective, focused on the EU, Austria, and
Germany, reviews regulatory frameworks such as the Energy Efficiency Act and AI Act shaping
the future of AI and how they address its environmental impact. The economic perspective
highlights how sustainability aligns with cost savings and new business opportunities, making
sustainable AI not only ecologically necessary but also financially beneficial. The findings
show that technical advances enable Sustainable AI, economic incentives support it, and legal
frameworks establish it as standard practice.
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1 Introduction
Artificial Intelligence (AI) has long been a goal of humanity, though the scientific field dedicated
to its development has only emerged not too long ago. Warren McCulloch and Walter Pitts
published the first recognised works of artificial intelligence in 19431. Later on, the famous Turing
Test, proposed by Alan Turing in 1950, provided a more operational definition of intelligence2

and shortly after the 2nd World War, the name AI was coined in 19563. Although it is a
fairly new scientific field, its subfields encircle a broad area, ranging from general knowledge
like Large Language Models (LLMs) or more specific areas including autonomous driving,
playing chess, solving mathematics4, or the very recent breakthrough in designing Protein
Structures, AlphaProteo5. AI is a prominent field that has experienced remarkable growth not
only in its effectiveness but also in popularity, especially since the launch of LLMs and more
specifically OpenAI’s ChatGPT, which gained 1 million users within the first five days of its free
launch6. Today there exists a large variety of proprietary or free AI products which can assist in
writing tasks, perform complex calculations, generate videos, and more. While AI has driven
remarkable progress across multiple fields, its rapid development has also increased concerns
about sustainability. AI systems require a lot of computational costs, particularly during training
and inference, which is a key contributor to rising energy consumption and carbon emissions.
A massive growth in data consumption can be observed, as data ingestion for recommendation
systems has increased by 3.2-fold from 2019 to 20217, which translates to significant demand on
resources and energy consumption. Humanity is facing a climate crisis as global temperatures
continue to rise, resulting in insecure food and water supplies, more frequent natural disasters,
and many more problems which need to be addressed8. While it is impossible to completely
reverse the damage already done, efforts can be directed towards a cleaner world. One of the
increasingly critical practices is sustainability, which is why this thesis will cover Sustainable
AI in three core aspects: Technical, Legal, and Economic.

1.1 Context and Problem Statement
The rapid growth of AI has not only yielded positive outcomes but also raised concerns for the
environmental impact of training and operating AI models. It has caused an unprecedented
surge in resource demand, with some studies showing a 300,000x increase in computing power
used for training AI between 2012 and 20189. Figure 1 illustrates the ’modern era’, which began
in 2012, highlighting the increase in computing power used for training AI models during this
time. During this period, a notable trend can be observed where the need for computational
resources has roughly doubled every 3.4 months, indicating an exponential increase. In contrast,
the ’first era’ instead shows a rough tracking of Moore’s Law, doubling only every two years10.
Another rising concern is that AI typically requires significant power, which is why it is often
powered in data centres. Currently, nearly 3% of energy consumption in the EU comes from
data centres, which is projected to increase by 28% by 203011. These statistics underscore that
the rise of AI must be contributing to an increase in carbon footprint, but more on its impact
will be explored in the 2nd Chapter.

1Russell et al. 1995, p. 16.
2Ibid., p. 2.
3Ibid., p. 1.
4Ibid., p. 1.
5Zambaldi et al. 2024.
6Burmagina 2025.
7Wu et al. 2022, p. 1.
8w.A. 2025i.
9Amodei and Hernandez 2018.

10Ibid.
11Butler 2023.



Sustainable AI - A Technical, Legal, and Economic Perspective 5

Fig. 1: Illustration of the contrast between the ’first era’ and ’modern era’ of computing
power used in AI. Source: Amodei and Hernandez 2018

.

1.2 Scope, Objective Research Questions
This thesis delves deeper into the concept of sustainable AI, which is how to operate or use AI
more environmentally friendly. Achieving sustainability will, however, require a multidisciplinary
approach, which is why this thesis will, at its core, examine three aspects that need to work
together to achieve environmentally friendly AI:

• The Technical Aspect will span from a broad perspective – comparing models and
architectures that achieve high performance with significantly lower energy usage – and
then dive deeper into how such efficiency is achieved through compression techniques,
specialised hardware, software, and algorithmic innovations.

• The Legal Aspect will overview legal frameworks and policies which foster sustainable
AI, primarily focusing on the European Union, while also zooming into Austria’s and
Germany’s regulatory practices. Furthermore, it will examine how legal measures and
incentives for local AI development and data centres can promote the sustainability agenda
and finally highlight policy gaps.

• The Economic Aspect will discuss incentives on how implementing sustainable AI
practices can reduce energy consumption and costs, as well as examine the innovation it
sparks and the opportunities it offers.

Key questions of this thesis will include how can AI models and infrastructure be designed to
be more energy-efficient without significant loss of performance? How are current laws facilitating
sustainable AI practices, and what is the future outlook? How is adopting sustainable AI
beneficial for companies? Following this introduction, Chapter 2 provides background on AI’s
environmental impact and the need for sustainability. This sets the stage for the core chapters,
where each aspect will be discussed in depth. A discussion will highlight the interplay between
technical, legal, and economics and appeal to the need for collaboration. To end this thesis, the
conclusion will summarise the findings and talk about the future outlook.



6 Sustainable AI - A Technical, Legal, and Economic Perspective

2 Environmental Impact and the Need for Sustainability
This chapter explores the rising environmental footprint of Artificial Intelligence, emphasising
the need for sustainability in AI. It begins by highlighting the rising energy consumption of AI
systems and then compares real-world consumption metrics which contextualise the impact. The
following section will discuss why sustainability is important and the implications for our climate.
Furthermore, a brief overview of why exactly data consumption in AI is rising will follow. This
chapter concludes by defining sustainable AI and briefly discussing current initiatives, which are
reviewed more in depth in Chapter 4.

2.1 Rising Energy Footprint of AI
With the rise of deep learning and the emergence of large language models, the environmental
footprint of AI has increased significantly. The previous section highlights the rapid growth of
data consumption of AI over the past years, but it might be difficult to imagine how it impacts
the environment. Figure 2 shows how the training of the GPT-3 175 billion parameter model
consumed several thousand petaflops a day12. Although OpenAI remained vague on the energy
consumption associated with training this model, subsequent research by Luccioni et al. 2022
offers a more precise estimation of the computational demands involved. The training of GPT-3
was estimated to have consumed 1,287 MWh of power, which is equal to 502 tonnes of carbon
emissions13. To put this into perspective, the average Austrian household consumes about 4,415
kWh in a year. Based on this figure, the energy used to train GPT-3 could have powered about
291 Austrian homes for an entire year. For further perspective, streaming one hour of Netflix
requires roughly 0.8 kWh, or 0.0008 MWh. This means to consume the same amount of power,
one would have to watch over 1.6 million hours14 or roughly 182 years of content on Netflix.
Newer models have even more parameters to train, e.g. GPT-4 has 1.76 trillion. Obtaining
estimates on every model is difficult since most companies training them do not enclose such data;
however, more parameters do not necessarily translate to more energy consumption. For instance,
a comparable LLM BLOOM with 176 billion parameters consumed an estimated 433 MWh of
power during training, resulting in only 70 tonnes of carbon emissions, which would be equal to
20× lower than that of GPT-315. This can mostly be attributed to the carbon intensity of the
energy source used for training, as the carbon intensity of the electric grid BLOOM was trained
on is 57 gCO2eq/kWh, compared to 429 gCO2eq/kWh for GPT-316. The following Chapter 3 will
explore the techniques and strategies more in depth which can be used to achieve efficient AI.

2.2 Why Sustainability is important
Society is facing human-induced climate change, which has been a growing concern for well
over a century. The so-called pioneer of climate change research, Svante Arrhenius, was the
first researcher to publish articles in 1896 on how CO2 would change the global temperature17.
Today, gases which trap heat and therefore increase global temperature are called greenhouse
gases. CO2 is a major greenhouse gas and its concentration has significantly increased due to
human activities. As global temperature continues to rise, society is witnessing not only hotter
summers in some regions but also a growing number of natural disasters. Massive floods, record
temperatures above 40° Celsius, melting glaciers, droughts, and many more have become regular
news headlines. To fight this, there have already been numerous climate change pledges, with

12Brown et al. 2020, p. 39.
13Luccioni et al. 2022, p. 7.
14Vincent 2024.
15Luccioni et al. 2022, p. 7.
16Ibid., p. 7.
17Wulff 2020, p. 1.
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Fig. 2: A comparison of computing power used for training AI Models. Source: Brown et al.
2020, p. 9

Fig. 3: This illustration shows the three greenhouse gases carbon dioxide, water vapour, and
methane, and how some of the heat, radiated by the sun, is trapped by them. Source:
w.A. 2025f

the Paris Agreement being the largest. It has been ratified by almost every country and pledges
to keep global warming below 1.5°C18. To reach this goal, the EU committed to reducing its
greenhouse gas emissions by 55% by 2030, compared to its 1990 levels, and aims to become
climate-neutral by 205019. Given AI’s rapid growth in energy consumption, managing its carbon
footprint and developing a sustainable AI lifecycle is crucial for meeting these climate targets.

2.3 Why is data consumption rising?
Following the examination of AI’s rapid growth in data consumption and its impact on the
environment, it is important to understand the reason behind this surge.

Throughout the history of computer science, there has always been a focus on algorithms
and how to increase their performance. Traditional improvements relied on Moore’s Law and
better algorithms, but in AI, abundant data has been a more critical factor. An enormous
18w.A. 2025h.
19Ibid.
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variety of sentence structures in forums, billions of different pictures, and work on word-sense
disambiguation - which is how a word might correlate to another word given context - along with
rapidly increasing availability of diverse data, have all been key drivers behind the increasing
effectiveness of AI systems20. Banko and Brill showed in 2001 that focusing on the algorithm is
not going to be of advantage by comparing average and excellent algorithms on different datasets.
The observations concluded that the average algorithm trained on 100 million words of training
data bests an excellent algorithm trained on 1 million words of training data21. Another work
examines how filling photos using a collection of pictures improved exponentially by increasing
the collection of photos by a factor of 20022. In summary, AI will perform better by examining
the learning methods and providing enough training data. This underscores why AI has been able
to have such exponential growth and how it has benefited from the increase in data availability.
However, this hunger for data translates to ever-growing datasets and computational loads, which
translates to higher energy consumption.

2.4 Defining Sustainable AI
Sustainable AI refers to the design, development, and deployment of artificial intelligence
systems in ways that minimise environmental impact. It emphasises energy efficiency across
the full AI lifecycle, ranging from model training to inference and its utilisation. It aligns with
broader sustainability goals such as reducing carbon emissions, integrating renewable energy,
and supporting long-term societal benefits.

In research, there is currently a differentiation between two approaches to AI. One is called Red
AI, which is, at the time of this writing, the more prevalent approach. It strives for state-of-the-art
results by sacrificing efficiency and achieving more accuracy through using massive computational
power in its training and deployment23. While this has brought valuable contributions to AI
research, it may not be the optimal approach for several reasons. The first, and most obvious,
is the already discussed impact it brings on the environment. The second becomes clear when
examining the relationship between performance and complexity. Model complexity can be
measured by the number of parameters or the inference time, whereas inference time describes the
time it takes for an AI model to make a prediction. Figure 4 shows that beyond a point, doubling
model size yields only a small accuracy improvement, showing a roughly logarithmic relationship24.
This suggests that Red AI might not be optimal and future-proof, as AI development might soon
hit a ceiling of data that can be consumed.

Green AI, the alternative and more environmentally friendly approach, is a call for efficiency
to be the primary success metric, instead of accuracy25. Along with accuracy, it has been a
widely accepted metric for research. Green AI encourages researchers to report and optimise
computational cost (e.g. FLOPs, energy or CO2) of new models in addition to accuracy, thus
making it more inclusive by enabling broader participation due to a lowered resource barrier26.
This approach will be discussed further in Section 3.2.1 of the following Chapter. Chapter 5 will
discuss how companies utilised AI to efficiently organise resources, therefore reducing energy
consumption and their carbon emissions.

20Russell et al. 1995, p. 28.
21Ibid., p. 28.
22Ibid., p. 28.
23Schwartz et al. 2019, p. 2.
24Ibid., p. 2.
25Ibid., p. 5.
26Ibid., p. 5.
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Fig. 4: In this illustration, three different ImageNet and one CUB2011 dataset are shown,
which are famous datasets used for image recognition tasks. In all of them, it can
be observed that only with an exponential increase in model size a linear growth in
accuracy can be achieved, showing that the relationship is at best logarithmic. Source:
Schwartz et al. 2019, p. 5

2.5 Current Initiatives and Awareness
Growing climate awareness has not only led to more sustainable industry practices, as well as
academic initiatives, but also to initiatives leading research on sustainable AI. Investment in
renewable energy is increasing, which could power data centres operating AI. Hardware is getting
continually more energy efficient, Green AI is gaining more prominence, and metrics regarding
energy usage per inference are increasingly reported. Additionally, growing awareness of the
information and communications sector can be observed, which accounts for five to nine percent
of global energy usage27. The core chapters of this thesis will discuss sustainable initiatives,
practices and awareness.

Following the deep dive into the impact of AI on the environment, the importance of sustain-
ability, and the concept of sustainable AI itself, will be the subsequent technical, economic, and
legal analyses, which highlight the multi-disciplinary effort of achieving sustainable AI, forming
the core of this thesis. As explored earlier, the large language model BLOOM succeeded in
reducing its carbon footprint by a factor of 20 compared to GPT-3’s, while maintaining similar
model complexity. The strategies to achieve such outcomes will be discussed in Chapter 3
Technical Strategies for Sustainable AI.

27Butler 2023.
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3 Technical Strategies for Sustainable AI
As AI systems’ environmental impact continues to grow, developing technical strategies to
reduce energy consumption and carbon footprint has become critical. These strategies include
energy-efficient model designs, techniques for achieving such designs, specialised hardware, and
software optimisations to maximise efficiency, and efficient training methods and intelligent
resource scheduling.

This chapter starts off by outlining important Neural Networks, as they are mentioned many
times throughout this thesis.

It will continue by exploring key approaches to energy-efficient AI models, diving deeper into
the Green AI philosophy, as well as different model designs and architectures through real-world
examples.

The discussion then moves towards model compression techniques, such as pruning, quanti-
zation, and distillation, which are presented as practical methods for building lightweight and
low-energy AI models.

Furthermore, the section on hardware and software optimisations highlights how specialised
hardware and optimised software can impact energy consumption. Finally, it will also examine
how energy-efficient data centre design can help reduce carbon emissions.

Additionally, strategies for more efficient training algorithms will be addressed, while also
including an optimised way of handling resources. Throughout this chapter, trade-offs between
performance and energy consumption are examined, offering insights and real-world exam-
ples of how AI Models can come to a balance between accuracy and efficiency, and be more
environmentally responsible.

By outlining these strategies, this chapter illustrates the critical role that technical innovation
plays in the broader effort to make AI development sustainable.

3.1 Overview of Neural Network Architectures in AI Systems
Artificial Intelligence (AI) systems have seen rapid evolution over the past decade, largely driven
by the development of specialised neural network architectures. These architectures form the
computational backbone of modern AI and are tailored for different types of data and tasks. This
section provides an overview of commonly used systems, focusing on their structural differences
and typical applications.

3.1.1 Deep Neural Networks

Deep Neural Networks (DNNs) are a general class of artificial neural networks with multiple
hidden layers between input and output. DNNs represent networks that consist of multiple
(typically 4 or more) hidden layers28. Hidden layers consist of neurons, weights, biases (also called
their parameters) and activation functions, such as Sigmoid or ReLU. Calculating inference,
which is the process of using a trained model to make predictions, is described as:

1. Multiplying our input data with the weights and adding our biases29

2. Aggregating the results into a single value30

3. Applying an activation function onto the state to modulate activity31

28Dhilleswararao et al. 2022, p. 5.
29Kaz Sato 2017.
30Ibid.
31Ibid.
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Fig. 5: Illustration showing the science of AI and how it is broken down to Deep Learning.
Source: Dhilleswararao et al. 2022

This sequence can also be written as matrix multiplications. While conceptually simple, DNNs
can model intricate relationships and are widely used in tasks like tabular data classification,
speech recognition, and fraud detection. Standard DNNs often lack inductive biases that
make them efficient for certain data types (e.g., images or sequences), and they can become
computationally expensive as depth increases. They serve as the foundation from which more
specialised architectures, like Convolutional Neural Networks (CNNs) and Recurrent Neural
Networks (RNNs), have emerged. Recent architectures like the Transformer (used in GPT-3 and
other LLMs) are also part of this landscape.

3.1.2 Transformers

Transformers have become a staple deep learning model in various artificial intelligence fields
such as natural language processing, computer vision and audio processing32. They have become
a go-to model for natural language processing, as they show state-of-the-art accuracy when
transformer-based pre-trained models are used33. There are numerous Transformers which differ
in strengths and weaknesses; however, the vanilla Transformer is a sequence-to-sequence model
consisting of an encoder and a decoder34. The key modules of the decoder and encoder are:

• Attention Modules in Transformers are adopted in a Query-Key-Value model35. It helps
it keep attention on more important information.

• The Position-wise FFN can operate separately and identically on each position36.

• Residual connection and normalisation: by employing a residual connection around
each module, followed by a normalisation layer, a deep model is built37.

• Position encodings help the Transformer grasp its current position38

32Lin et al. 2022, p. 1.
33Ibid., p. 1.
34Ibid., p. 2.
35Ibid., p. 2.
36Ibid., p. 2.
37Ibid., p. 2.
38Ibid., p. 2.
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3.1.3 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are networks trained for solving visual tasks and their
deployment has already been in research since the late 1980s39. It has been one of the most
important neural networks, as it allows for tasks once deemed impossible, such as facial recognition
and autonomous driving40. CNNs are a type of feed-forward network which automatically extract
features from structured data, especially images41. They are inspired by biological visual
perceptions as they mimic the way neurons respond respectively to specific stimuli42. They are
efficient due to their reduced number of parameters from implementing local connections and
weight sharing43. A CNN consists of five core components:

1. Convolution applies kernels to input data to extract features, thus producing feature
maps44.

2. Padding enlarges the input, usually with zeros, to preserve information during convolu-
tion45.

3. Stride controls the density of convolving46.

4. Pooling combats overfitting by removing redundancies (e.g. max-sampling downsamples
the feature maps)47.

5. Dilated Convolution helps convolution kernels perceive larger areas of the image without
additional weights48.

Together, they enable CNNs to efficiently learn hierarchical and spatially aware features,
making them foundational in deep learning for vision tasks.

3.2 Energy-Efficient AI Models and Algorithms
While the field of Artificial Intelligence has made continuous progress, many of these breakthroughs
have largely been driven by the Red AI mindset. Although this approach enabled rapid progress,
it did so by sacrificing environmental care through the usage of massive amounts of power. This
established multiple norms, which include expensive training and inference costs, large-scale data
processing and running extensive experiments (hyper-parameter searches, model ensembling,
etc.)49. It is effectively buying stronger results with brute-force computation, while also excluding
smaller research groups that cannot compete due to a lack of resources. In response, research has
started advocating and demonstrating Green AI, a more environmentally and inclusive approach.
Section 3.2.1 will dive deeper into Green AI.

Moreover, to emphasise how focusing on efficiency can still have extraordinary performance,
the subsequent section will compare real-life models like DistillBert, which are compressed or
distilled models that are trained on a larger ’teacher’ model. Using this method, DistillBert
managed to retain most of the larger model’s performance, but with a reduced size and improved
speeds. The discussion then moves to architectural innovations, illustrated by EfficientNet, which
39Dash 2025, p. 1.
40Li et al. 2022, p. 1.
41Ibid., p. 2.
42Ibid., p. 2.
43Ibid., p. 2.
44Ibid., p. 2.
45Ibid., p. 2.
46Ibid., p. 2.
47Ibid., p. 2.
48Ibid., p. 2.
49Schwartz et al. 2019, p. 4.
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used neural architecture search and compound scaling to achieve state-of-the-art performance
with far fewer resources compared to traditional scaling methods.

Together, these insights demonstrate that both smart model compression and thoughtful
architectural design are essential strategies for advancing Sustainable AI.

3.2.1 ’Green AI’ Approach

The more prominent way of AI research has been Red, with its focus being on model accuracy.
Green AI, however, seeks to have a more positive impact on the environment by prioritising
efficiency alongside accuracy, resulting not only in reduced energy consumption but also greater
inclusiveness, by opening AI research to a broader audience50. A common way to measure
efficiency is to examine the amount of computational power that is required to train a model.

However, there may be various factors that can influence efficiency results, such as local
electricity infrastructure, the hardware used, and other conditions, which is why it is important
to find a stable measure across different locations, times, and hardware configurations:

• Carbon Emission has already been mentioned a fair amount across this thesis. It is
however, not always practical to use as a stable efficiency measure, since it can be influenced
by different factors, such as the local energy infrastructure and location51.

• Electricity usage is similar to carbon emission, only that location and time are not
relevant. Mostly, it is measured by the amount of electricity consumed by a GPU when
generating AI results, thus making it also influenced by hardware52.

• Elapsed real time would usually be a very obvious answer to measure efficiency. The
faster a process can finish, the less computational power is used, resulting in more efficiency.
Although plausible, it is still not a stable enough measure for efficiency, due to it also being
influenced by the hardware performance (e.g. how efficient is the hardware, are there any
other jobs running, how many cores are available for training)53.

• Number of parameters is a common measure for efficiency, which describes the number
of parameters used by an AI Model. Similar to runtime, it is correlated with the amount
of work performed; however, unlike other measures, it is independent of the underlying
hardware. Yet, it still does not represent the most suitable efficiency measure, due to
algorithms utilising their parameters differently, e.g. by having a wider instead of deeper
model. This often leads to different efficiencies among different models with similar
parameters, e.g. a 100 million–parameter CNN might outperform a 100 million–parameter
RNN on images due to architecture54.

After thorough examination of these and why they are not optimal and stable enough energy
efficiency measures, Green AI researchers advocate for using floating point operations or FLOP(s)
as a measurement metric. They describe the number of basic mathematical operations a running
AI model performs, specifically additions (ADD) and multiplications (MUL). FLOP(s) can be
calculated by breaking down complex problems, like multiplying matrices or running big models,
as well as breaking them down into multiple ADD and MUL operations and adding up the cost.
This shows how much work a machine has done, which can therefore be closely correlated to
the energy consumption of a machine. It is also strongly associated with elapsed real time, but
unlike the elapsed time, the work done can be quantified at each time step, independent of
50Ibid., p. 5.
51Ibid., p. 6.
52Ibid., p. 6.
53Ibid., p. 6.
54Ibid., p. 6.
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Fig. 6: This table illustrated the comparison of three different models: BERT, DistilBERT
and ELMo on the GLUE benchmark, where DistilBERT show a retaining 97% perfor-
mance of BERT. Source Sanh et al. 2020

hardware slowdowns. With these connections, FLOP(s) are also not influenced by the underlying
hardware, making it a fair and stable comparison metric between models. Some tools have already
integrated FLOP(s) calculations in popular machine learning algorithms, but some modern AI
models are still missing needed parts, which is why Green AI is encouraging the implementation
of such functionality55.

In practice, this thesis will still discuss and not overlook metrics such as carbon emissions or
energy usage, since the community and society hasn’t yet standardised a measurement metric.
Some models can still be compared by, e.g. carbon emissions when the same location and
hardware are in use.

3.2.2 Smaller Models, Big Impact

OpenAI’s GPT-3 with 175 billion parameters demonstrated remarkable capabilities, but also
brought a great amount of energy consumption with it. The trend towards larger models has not
only brought environmental concerns, but operating models on the edge will become increasingly
difficult, due to growing computational demand and memory usage. With algorithmic innovations
like knowledge distillation, researchers have found models maintaining a similar performance
with only a fraction of their counterparts’ size while boasting a much higher computational speed.
These models are called distilled or efficient models and achieve similar results using far fewer
resources. Knowledge distillation is discussed briefly here and in more detail in Section 3.3.3.

DistilBERT, a distilled version of BERT, managed to reduce its size by 40% and be 60%
faster while retaining about 97% of its language understanding abilities, tested with the GLUE
benchmark (see Figure 6)56. For training, a compression technique called knowledge distillation
was used, in which a distilled model, also called the student model, is trained to replicate the
behaviour of a larger model, or the teacher model. The student model is trained on a loss, where
it tries to match the teacher’s output distribution, and not just predict the correct result. To
achieve this, a cross-entropy loss between the soft target probabilities from the teacher and the
student’s predicted probabilities was used. Normally, a softmax makes one class very confident
and others not, but here, a softmax temperature was used. A higher temperature produces a
flatter (less confident) distribution, meaning the teacher’s probabilities are spread out, so the
student can learn which mistakes are ’almost correct’. Finally, the student had the same general
architecture as the teacher, with a focus on reducing the number of layers, due to prior studies
showing that model depth had the most impact on efficiency57.

3.2.3 Efficient Model Architectures

DistilBERT exemplifies how compression can yield huge efficiency gains, but designing the right
architecture can likewise have a positive impact on computational efficiency. To provide more

55Schwartz et al. 2019, p. 6.
56Sanh et al. 2020, p. 1.
57Ibid., p. 2.
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context for this section, a model refers to a specific trained instance, whereas architecture refers
to the general network design (the blueprint that could be instantiated and trained).

ConvNets (see Section 3.1.3) are usually designed at a fixed budget, and further scaled to a
desired point if more resources are available. Scaling is primarily used to increase the accuracy
of a model, e.g. GPipe, a very large pipelined neural network, managed a 84.3% Top-1 image
recognition accuracy by scaling up its baseline by 4×58. However, different baselines can have a
variety of impacts, which is why EfficientNet tried to focus on energy efficiency while keeping
high accuracy. Their baseline network, EfficientNet-B0, was built using multi-objective neural
architecture search, which tries to optimise accuracy with fixed FLOPs, effectively controlling
the trade-off between accuracy and FLOPs59. Further steps include applying their compound
scaling method by setting the compound coefficient 𝜑, which uniformly scales the width, depth
and resolution of ConvNets. The variable 𝜑 controls how many resources are available, using
the constants 𝛼, 𝛽 and 𝛾, which have been found using a small grid search (the compound
scaling method is explained in more depth in Tan and Le 2020, p. 5). Using this compound
scaling method, and their baseline, EfficientNet-B7 resulted in having a 84.3% Top-1 ImageNet
accuracy (the same as GPipe), while being 8.4× smaller and 6.1× faster than it and other leading
ConvNets60.

After exploring the role of models and architectures, the following Section 3.3 will delve deeper
into model compression techniques that allow lightweight and resource-efficient AI systems.

3.3 Model Compression and Lightweight Models
In the previous Section, it was discussed how a compressed model can still deliver good results
while using less computational power, directly translating to energy savings. This section will
go more in-depth about techniques which can achieve such feats and create compressed and
lightweight models. The key techniques which are examined are Pruning and Quantization,
two forms of network compression that typically boost efficiency at the cost of only a small
accuracy drop. Pruning uses various criteria to remove unneeded computation, and it can be
categorised as static, which refers to performing pruning offline or dynamic, if it is performed
during run time61. Quantization, instead, is a method of lowering data type precision, like
weights, biases and activation, to reduce model size62. Both these techniques can be used either
by themselves or in tandem to maximise model compression and improve efficiency.

Furthermore, the already mentioned knowledge distillation, used by DistillBert (see Section
3.2.2), will be explored. It refers to training a student model by trying to mimic a ’teacher’
model’s output, resulting in models that are much smaller and faster, and also retain most of the
’teacher’ model’s accuracy.

Finally, a discussion of real-world case studies of model compression in industry-scale systems
will conclude the chapter.

3.3.1 Pruning

The development of pruning techniques started back in the 1990s, where it was used for memory
size and bandwidth reduction, allowing AI systems to be deployed in smaller environments such
as Internet of Things (IoT) systems. Optimal Brain Damage, proposed by LeCun in 1990, was
an early pruning method to prune single non-essential weights63. Some case studies suggest that
larger networks may be redundant. For example, GoogLeNet achieves 69.8% top-1 accuracy

58Tan and Le 2020, p. 1.
59Ibid., p. 5.
60Ibid., p. 1.
61Liang et al. 2021, p. 1.
62Ibid., p. 1.
63Ibid., p. 7.
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on ImageNet with only 7 million parameters, comparable to VGG-16’s accuracy but with far
fewer parameters. Similarly, MobileNet reaches about 70% top-1 accuracy with just 4.2 million
parameters and 1.14 GFLOPs64. Pruning works by locating parameters or neurons inside a
neural network which do not contribute to inference accuracy, due to their weight coefficient
being zero, close to zero, or replicated by another parameter. These are redundant parameters
which are identified and removed using various pruning techniques to increase computational
efficiency and reduce model size. In some cases, a pruned model can be fine-tuned or retrained
to increase accuracy by removing overfitting and escaping local minima65. Although pruning
may be classified by different aspects, a common way is to categorise it by when the pruning
steps are performed: Static and Dynamic Pruning (illustrated in Figure 7).

• Static Pruning is a compression technique which describes the removal of parameters
as an offline process, usually once after training, but before inference. It is commonly
split into three parts: 1) selection of parameters to prune, 2) selection of pruning methods
and 3) optionally re-training the pruned model, which may increase accuracy but with
significant computational overhead66. However, during this process, the original structure
is destroyed, and model capabilities may be decreased, which might not be the optimal
choice in some cases67.

• Dynamic Pruning, on the other hand, instead of trying to prune once before training,
it focuses on removing layers, channels and neurons on the fly68. With this approach,
the limitation of static pruning can be overcome by taking advantage of changing the
input data and thus saving on computational overhead69. Dynamic methods typically do
not require retraining during inference; they rely on the decision policy learned during
training70. Most pruning techniques in practice are static (for simplicity), but dynamic
pruning is an active research area for achieving extra efficiency at runtime.

Pruning methods usually only differ in the way they choose what to prune. Some methods
calculate how sensitive the network is if a specific neuron or weight is removed, and then remove
the least sensitive parameters first71. Other methods use regularisation and add penalty terms to
loss functions (such as L0/L1 norm penalties), which encourages weights to become zero or close
to zero, effectively pruning the model72. A good pruning method baseline, which works well in
practice, is magnitude-based pruning, where the smallest-magnitude weights are removed. A
study, which used the magnitude-based pruned model ResNet-50, showed higher accuracy than
state-of-the-art models, while boasting the same computational complexity73. Overall, pruning
can drastically shrink model size and compute demands. Researchers have reported, for example,
compressing a VGG network by 20× (and 5× fewer computations) with only 0.1% accuracy
loss using automated layer-wise sparsity tuning74. In summary, pruning removes redundant
parameters from the networks to compress them in size, thus reducing their complexity, speeding
up their processing and removing computational overhead, while losing almost no accuracy.

Pruning can be combined with other techniques, like quantization, for even greater effect,
which is examined next.

64Liang et al. 2021, p. 6.
65Ibid., p. 6.
66Ibid., p. 6.
67Ibid., p. 10.
68Ibid., p. 10.
69Ibid., p. 10.
70Ibid., p. 10.
71Ibid., p. 7.
72Ibid., p. 7.
73Ibid., p. 12.
74Ibid., p. 9.
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Fig. 7: Pruning steps can be run before inference, which refers to Static Pruning, while
Dynamic Pruning completes its steps at runtime. Source: Liang et al. 2021, p. 6

3.3.2 Quantization

Quantization is another method of compressing an AI model, but instead of removing irrelevant
parameters like pruning, it focuses on reducing the numerical precision of a network’s parameters
and computations. It describes the process of approximating a continuous signal by a set of
discrete symbols or integer values75. Quantization methods can vaguely be categorised into
weight clustering and low-bit numeric representations. The first approach works by restricting
weights into small sets of clusters, e.g. by using k-nearest neighbours to find common weights,
which are then stored in a compressed file instead of the full precision numbers76. These weights
are then decompressed, using a lookup table or linear transformation, during inference time;
however, such partial quantization mainly reduces storage and has to decompress weights at
runtime, so it doesn’t speed up computation by itself77. The more common approach, and the
focus in most literature, is low-bit quantization of weights and activations for actual computation.
This practice has been proposed as far back as the 1990s and translates to lowering the precision
values of weights, biases, and activations78. For example, weights that were previously 32-bit
are converted to 8-bit integer values, thus reducing memory overhead and in turn improving
inference time. Typically, networks have been trained using a 32-bit floating point representation
of their parameters, but research has shown that 8-bit values not only have faster inference times,
but also significantly less storage requirements, while still having similar accuracy79. These
findings piqued the interest in quantization, and nowadays, 8-bit quantization is seen as the sweet
spot for accuracy and compression, as it provides roughly a 4× reduction in model size (8-bit
numbers are 4× smaller than 32-bit) and is supported by GPUs, CPUs, and other specialised
hardware, due to significantly faster 8-bit arithmetic operations80. By using proper techniques,
8-bit quantization or other quantization methods can still achieve high accuracy with minimal loss.

Quantization Techniques describe how quantization can be applied to networks. The main
work flows include:

• Post-Training Quantization takes a fully trained model and quantizes the weights.
For example, a usual 32-bit trained model is taken, its values are mapped to a lower-
bit presentation (such as 8-bit), and often a calibration step is involved to adjust for
quantization error81.

• Quantization-Aware Training (QAT) integrates the quantization of parameters into the
training process itself. A model is either trained or fine-tuned while simulating downscaled

75Ibid., p. 12.
76Ibid., p. 12.
77Ibid., p. 12.
78Ibid., p. 12.
79Ibid., p. 12.
80Ibid., p. 23.
81Ibid., p. 12.
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low-precision weights, such as 8-bit, so that a network may tolerate the quantization
effects82. By doing so, the model adapts to the quantization noise and typically yields
higher accuracy after quantization compared to a post-training approach83.

When applying quantization, it is important to consider the extent to which the network
components are quantized. Quantizing only the weights can yield moderate reductions in memory
usage and computation time. However, for more substantial performance gains, it is common
practice to quantize both weights and activations to 8-bit integers. This broader quantization
enables more efficient use of hardware accelerators that are optimised for low-precision arithmetic.
In contrast, network biases are typically left in higher precision, such as 32-bit floating point.
This is because they occupy a negligible portion of the model’s overall memory, and preserving
their precision helps avoid numerical instability, particularly during accumulation operations in
inference84. Lower bit quantization has been researched, but it introduces re-training difficulties
of networks, as well as problems for inference85. Choosing the proper method and adequate
quantization techniques is key to reducing memory usage and improving computation times,
while losing little accuracy.

3.3.3 Knowledge Distillation

The Section 3.2.2 has already discussed how knowledge distillation can be utilised to compress a
model, to reduce size and improve its efficiency. This section will dive deeper into the methods and
techniques which have been applied to the natural language model BERT to produce its distilled
version, DistilBERT. To recap, DistilBERT is a compressed or distilled version of BERT, which
managed to retain 97% of BERT’s accuracy, but only using 60% of its size86. The key motivation
was to bring complex models to edge devices. To achieve this, it used knowledge distillation,
where a smaller student model learns from a more complex teacher model. The student model
learns from the probabilities of class predictions, also called soft probabilities, which have been
made by the teacher model, while minimising cross-entropy between both distributions87. This
results in the student model mimicking the teacher’s behaviour and predictions. DistilBERT
employs a triple loss function during its knowledge distillation process to effectively transfer
knowledge from the teacher model to the smaller student model. Specifically, DistilBERT’s triple
loss function consists of:

1. Masked language modelling loss is a technique to learn language patterns, where a
word is replaced with a special character, which has to be then predicted by the model.
The cross-entropy of the student’s and teacher’s predictions is calculated, and the student’s
parameters are updated using backpropagation88.

2. Distillation loss is important to help the student capture patterns learned by the teacher.
The probability distributions of the student model are matched to those generated by the
teacher model89.

3. Cosine Embedding Loss encourages the alignment of the hidden-layer embeddings
between the teacher and the student, to ensure the student can replicate the teacher’s
internal semantics90.

82Liang et al. 2021, p. 12.
83Ibid., p. 23.
84Ibid., p. 14.
85Ibid., p. 28.
86Sajid 2024.
87Ibid.
88Ibid.
89Ibid.
90Ibid.
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Fig. 8: In the knowledge distillation process of DistilBERT, the three loss func-
tions—distillation loss, masked language modelling loss, and cosine embedding
loss—were linearly combined into a single loss value. The resulting aggregation was
subsequently used during the backpropagation phase to adjust the weights of the
student model, thereby effectively guiding it toward the behaviour and representations
of the teacher model. Source: Sajid 2024

When calculating the distillation loss, a softmax temperature of greater than one was used.
This results in more distributed output probabilities, so skewed labels can be reduced due to
the teacher’s certain probabilities. This helps the student learn how to imitate the teacher more
closely91. Figure 8 illustrates how the three loss functions were used to adjust the student’s
weights.

3.3.4 Real-World Impact

Section 3.3 has discussed different models and architectures and how model compression can
impact the size and speed of AI systems. Models, like DistilBERT, have been discussed in
depth; however, not many people may interact with such a network directly. As industries are
continuing to deploy AI at scale, this section will briefly discuss real-world case studies on how
model compression can be used on systems that are used daily by a multitude of people.

YouTube, the most well-known video-sharing platform, had an estimated 210 million viewers
in the United States alone in 202292. This metric underscores the immense volume of videos
consumed daily. The content can be accessed in different ways, be it the search function, a
shared video, or by browsing subscriptions. While all of these are still actively used, research
has shown that recommendations are the most influential driver of views, with related video
recommendations accounting for approximately 30% of the overall views93. AI models, which are
behind recommender systems, can use vast amounts of data to process and recommend content.
Which is why there have been challenges, like the YouTube-8M Video Understanding Challenge,
in constructing a constrained system that can handle the massive amounts of content, although
compressed for efficiency. Using quantization and replacing the 32-bit precision parameters with
16-bit precision, researchers have managed a 48.5% compression, along with having no loss of
model accuracy94.
91Ibid.
92Ceci 2023.
93R. Zhou et al. 2010, p. 6.
94T. Liu and B. Liu 2018, p. 1.
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To further demonstrate examples of how model compression can be beneficial, this section
will take another look at CNNs (see Section 3.1.3). The previously mentioned database Ima-
geNet enables comparisons of various CNNs by their performance in classifying images. Image
Recognition itself supports a wide range of practical applications, but most of society uses the
smartphone extensively. CNNs are used for common image recognition use cases in smartphones,
ranging from everyday convenience to more advanced features:

• Face Unlock is an everyday feature in modern smartphones, allowing for quick, convenient,
and secure device access through facial recognition.

• Augmented Reality (AR) leverages image recognition to track surfaces and features,
seen in applications like Pokémon GO, where virtual elements are anchored to the physical
environment.

• Photo Search connects text to visual elements, enabling quick locating of specific pictures.

• Magic Eraser is a fairly new Google Pixel device feature, which has already been adopted
by many devices, allowing users to remove unwanted objects from photos seamlessly through
the use of image recognition and inpainting95.

These features require models which are capable of recognising visuals, while being small due
to the restricted storage space on phones. As it has already been examined, EfficientNet, an
extraordinarily small model, managed state-of-the-art accuracy while being 8.4× smaller, as
well as 6.1× faster, than competitors96. SqueezeNet, a different CNN, managed to compress its
original model’s size by a factor of 510, compared to AlexNet, to only 0.47MB, while still having
the same Top-1 ImageNet Accuracy97.

In summary, model compression techniques are already enabling AI at scale (YouTube) and
on resource-constrained devices (smartphones) without sacrificing capability. However, efficiency
isn’t just impacted by model design – it also depends on the hardware it runs on and the software
optimisations in use, which will be addressed in the following section.

3.4 Hardware and Software Optimisations
After the discussion of energy-efficient AI models and how to construct them, this section will
go even deeper into the AI lifecycle. It will examine how additional efficiency can be squeezed
out by deploying specialised hardware, implementing software optimisations, and how intelligent
data-centre designs can further improve performance.

3.4.1 Specialised Hardware

Choosing the correct hardware impacts the performance of AI systems. Graphic Processing Units
(GPUs) and Tensor Processing Units (TPUs) are far more efficient for AI workloads, due to their
ability to perform massively parallel arithmetic operations. Google’s first TPU managed to gain
30×-80× performance-per-watt compared to its counterpart GPUs and CPUs98. This section
will examine components and hardware which have been specifically built for AI computation to
improve energy efficiency. Due to their nature, CPUs are inherently inefficient at processing vast
amounts of sequential data. While they do offer more resources than e.g. GPUs, their parallelism
capabilities are limited and their power consumption is high99. As section 3.1.1 has mentioned,

95w.A. 2023.
96Tan and Le 2020, p. 1.
97Iandola et al. 2016, p. 7.
98Kaz Sato 2017.
99Dhilleswararao et al. 2022, p. 2.
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computing inference in DNNs can be broken down into matrix computation. The Arithmetic
Logic Unit (ALU) and reduced instruction set computer (RISC) architectures of CPUs are built
for common operations, not large matrix multiplications (as they require multiple sequential
steps)100. Some specialised hardware takes advantage of this fact and specifically builds upon
this.

Graphics Processing Units (GPUs) based accelerators have been commonly used for train-
ing AI systems. By nature, their design is highly compatible with running parallel computation
in terms of the number of cores and computation speed101. By leveraging large parallel cores and
the Single Instruction Multiple Thread (SIMT) execution models, they are highly favoured for
performing deep learning algorithms102. Especially NVIDIA GPUs and their CUDA technology
manage up to 50×-150× speed-up when compared to an equal CPU-based implementation103.
Although powerful and fast GPUs are still not specifically tailored for DNN applications, a major
drawback being their high power consumption.

Application Specific Integrated Circuits (ASIC) are specifically tailored for DNN
applications and offer high energy efficiency and computational performance104. Industries have
started building custom ASICs to accelerate AI computation, like Eyeriss and Google Tensor
Processing Unit (TPU).

• Google’s Tensor Processing Units (TPU) is a type of ASIC which manages 15×-30×
higher performance in DNN applications105. As has been mentioned, computing inference
can be broken down into numerous matrix calculations. TPUs are customised to be
outstanding at these operations. One of the reasons is that their instruction set is based on
the complex instruction set computer (CISC), which allows for high-level instructions to
complete complex tasks106. It includes the Matrix Multiplier Unit (MU), the Unified Buffer
(UB) and Activation Unit (AC), which are all controlled by this instruction set. The MU
in particular is designed to handle hundreds of thousands of operations in a single clock
cycle107. Keeping the design minimalistic, straightforward and specific to DNN operations
is what increases efficiency.

• Eyeriss is another ASIC accelerator useful for increasing CNN efficiency. It uses a row-
stationary dataflow, which is proficient in data reusing, thus effectively minimising energy
consumption108. Eyeriss consists of an array of 168 processing elements (12×14), on-chip
feature map compression units, and a global buffer.109. The global buffer is the reason for
data reuse. Its successor, Eyeriss v2, further enhances efficiency and throughput by using a
hierarchical mesh Network-on-Chip (NoC) for better hardware utilisation and support for
sparse neural networks110. This setup shows support for various CNNs (e.g AlexNet) and
flexible configurations, as well as experimental results showing an 11.3× increase in energy
efficiency and a 42.5× increase in throughput, compared to its v1 predecessor111.

Field Programmable Gate Arrays (FPGAs) offer a more flexible alternative to ASICs.
Due to their fixed nature, ASICs are extremely efficient for certain tasks but not easily adaptable,

100Kaz Sato 2017.
101Wang et al. 2020, p. 2.
102Dhilleswararao et al. 2022, p. 24.
103Ibid., p. 24.
104Ibid., p. 19.
105w.A. 2023.
106Ibid.
107Kaz Sato 2017.
108Dhilleswararao et al. 2022, p. 21.
109Ibid., p. 21.
110Ibid., p. 22.
111Ibid., p. 22.
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whereas FPGAs trade some efficiency for flexibility. This is possible because FPGAs give
hardware architects the choice to implement only the required logic in the hardware, as needed
for the target application112. Their speed-up in computing is achieved by mapping to parallel
hardware, i.e. several DNN models run in parallel113. FPGAs can be categorised into three
types: for specific applications, specific algorithms, and accelerator frameworks with hardware
templates114. While FPGAs usually cost less and are faster in production, due to their flexibility,
they are significantly less performant and efficient than ASICs115.

3.4.2 Software Optimisations

Software optimisations in AI frameworks and compilers have also contributed significantly to
efficiency improvements. AI frameworks (e.g. TensorFlow, PyTorch), which offer building
blocks for AI systems, have started implementing graph optimisations to remove redundant
computations116. Techniques like mixed-precision training, where a lower precision (e.g. like
quantization 3.3.2) can accelerate training and inference while using less energy, with negligible
accuracy impact117. Using more efficient algorithms for matrix operations, caching intermediate
results, and more are all contributing to increased efficiency. Choosing the proper hardware
and software setup is what yields the best energy efficiency. This section will concisely review
NVIDIA’s TensorRT, which can optimise trained networks for faster and more efficient inference
on specific hardware.

TensorRT is a proprietary software inference engine provided by NVIDIA designed to optimise
neural network (NN) inference on edge devices118. The key components used in TensorRT’s
software optimisations are model compression, which uses discussed techniques like quantization
(see 3.3.2) and parameter pruning (see 3.3.1) to achieve higher efficiency119. Following the model
compression, it is then mapped onto hardware-specific kernels, specifically CUDA kernels in
NVIDIA GPUs, to maximise computational efficiency and minimise inference latency120. With
its optimisation steps, it managed a 23×-27× higher classification throughput, while maintaining
or sometimes even gaining model accuracy121. However, these optimisations introduced some
unexpected behaviours. Sometimes varying inference outputs across multiple compilations of
the same NN model are produced, leading to inconsistent predictions for identical inputs122.
Additionally, latency anomalies were observed where execution on more powerful hardware was
slower compared to less powerful hardware123. This was attributed to differences in CUDA
memory copying speeds and kernel execution times124.

3.4.3 Energy-Efficient Data Centre Design

Beyond deploying efficient software and hardware, designing infrastructures with efficiency in
mind is the next step in optimising AI. Innovations like advanced cooling or intelligent power
management can be applied in modern data centres. For instance, raising the inlet temperature
makes air cooling more efficient, a practice which is now mandatory by law in Germany due to

112Dhilleswararao et al. 2022, p. 8.
113Ibid., p. 8.
114Ibid., p. 8.
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116w.A. 2024g.
117Micikevicius et al. 2018, p. 1.
118Ho et al. 2024.
119Shafi et al. 2021, p. 2.
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the Energy Efficiency Act (see Section 4.1.4). Integrating energy reuse, such as capturing and
reusing server heat, and making use of renewable energy will be important for reducing carbon
footprint. Software can help too, by scheduling tasks efficiently to avoid peak thermal loads,
and splitting the workload to less busy servers. Data Centre efficiency matters as they usually
power AI operations and due to their high energy consumption. In 2009 they accounted for an
estimated 2% of global energy consumption125.

To counter the rising energy consumption, there are a few design innovations, namely a
centralised energy-efficiency controller. Usually, a data centre controller splits resource control
among various resource controllers. More often than not, these resource controllers in data centres
can work against each other and sometimes counter their effects126. A centralised controller,
by contrast, receives workload conditions from various resource controllers, makes a global
decision by coordinating resources across the data centre, and then provides feedback to the
individual controllers127. This feedback enables resource controllers to make clearer and more
energy-efficient decisions128.

Deploying specialised hardware for AI systems is an additional step towards increasing efficiency.
Section 3.4.1 discussed TPUs and how their specific architecture can be used for DNN to increase
performance. After the issue of energy consumption became apparent in 2013, Google designed,
tested and deployed TPUs to their data centres in just 15 months129.

Cooling is an important aspect to consider when designing data centres, as it can account for
38% of power consumption130. Implementing efficient cooling systems, like direct-to-chip cooling
and evaporative cooling, is key, but recently, a new norm has emerged. Free Cooling, a fairly
popular concept, holds the air inside data centres until it’s hot and replaces it with fresh and cool
outside air131. Depending on the region, this cooling method could completely cut energy costs,
due to outside air always being cooler than the data centres132. Free Cooling is split into two
techniques, direct and indirect free cooling. Direct free cooling draws outside air directly into
the data centre and exhausts hot air back out133. However, concerns are air quality as usually
filtration and mixing with recirculated warm air may be needed. A safer approach is indirect
cooling, as the air is exchanged via a heat exchanger, which keeps indoor quality stable and
avoids contamination134. Although the more prominent approach, the trade-off is slightly less
efficiency, due to the added heat exchange step.

Efficiency in data centres can only be achieved through holistic consideration, encompassing
hardware utilisation, data centre location, architectural design, and the integration of systems
aimed at improving overall efficiency.

3.5 Training Efficiency and Resource Optimisation
Efficient deep neural network (DNN) training is crucial for reducing environmental impact and
operational costs associated with AI systems. This section will discuss techniques which have
emerged over the past years to improve training efficiency. They include techniques like transfer
learning, which describes the process of starting from a pre-trained model instead of training
from scratch, or early stopping, which stops training when sufficient accuracy is achieved, to
avoid overtraining. Subsequently, a discussion on how to handle and allocate resources, where

125Shuja, Bilal, Madani, Othman, et al. 2016, p. 1.
126Ibid., p. 2.
127Ibid., p. 2.
128Ibid., p. 2.
129Kaz Sato 2017.
130Shuja, Bilal, Madani, Othman, et al. 2016, p. 6.
131Mukherjee et al. 2020, p. 2.
132Ibid., p. 2.
133Ibid., p. 13.
134Ibid., p. 14.
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scheduling can yield efficiency gains, will follow. Finally, optimisation frameworks, such as
Zeus, will be discussed, which address the environmental impact of training by balancing energy
consumption and training performance through automatic configuration of training parameters.

3.5.1 Efficient Training Algorithms

Throughout this thesis, it has been examined how training different models can have extraordinary
energy consumption. Particularly, section 2.1 mentioned how training the GPT-3 model required
the same amount of energy as roughly 300 Austrian households in a year. As AI capabilities
grew, researchers developed new training strategies to reduce the computational energy required.

• Transfer learning is a technique used to increase the target efficiency of models by
transferring information from different domains135. It stems from the human capabilities of
learning new hobbies more quickly than others, by being proficient in a similar domain136.
An active handball goalkeeper may be more quickly accustomed to playing as a football
goalkeeper, due to their muscle memory being used to catching, in comparison to someone
with not sports background. This effect can be used in machine learning, as a classification
algorithm for alike domains (such as digital camera reviews and food reviews), can boost
the target inference accuracy by using less data137. This reduction in data consumption
and training time can lead to a more efficient training of AI models.

• Early stopping is another training algorithm which has multiple upsides, such as the
reduction of overfitting and increased training efficiency. Usually, during training, param-
eters and hyper-parameters are tuned to acquire the best performance, but researchers
have found that performance and accuracy may plateau, or worse, even decrease, due to
overfitting138. A simple, but effective way to combat overfitting is early stopping. By
utilising different techniques to choose a fitting stopping criterion, one cannot only reduce
overfitting, but also shorten training time, and effectively increase efficiency139.

3.5.2 Resource Scheduling and Allocation in Date Centres

Large-scale training usually happens in data centres, where intelligent scheduling can improve
efficiency and reduce the carbon footprint. In section 3.4.3, energy-efficient data centre designs
were discussed. Task runs can be efficiently scheduled where renewable energy supply is high or
when the grid carbon intensity is low. This process is called resource scheduling. While resource
scheduling is also a common project management term, which dates back as early as 1960140,
it is also used to name the process of scheduling resources used in e.g. data centres. This can
be very challenging, as there are multiple dimensions affecting operations, making it difficult to
properly account for everything. Frameworks, like Data Centre-wide Energy-Efficient Resource
(DCEERS), have been proposed, which schedule resources depending on throughput demand141.
Data centres are modelled as a multi-commodity flow network, which enables the framework to
calculate the minimal resource requirement for the current workflow142. Applying such intelligent
resource scheduling increased the energy efficiency of data centres, thus reducing costs as well as
environmental impact.

135Weiss et al. 2016, p. 1.
136Ibid., p. 2.
137Ibid., p. 2.
138Prechelt 1998, p. 1.
139Ibid., p. 1.
140Gordon and Tulip 1997, p. 1.
141Shuja, Bilal, Madani, and S. U. Khan 2014, p. 1.
142Ibid., p. 11.
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Another technique, which hyperscale data centres use (i.e. large-scale, highly optimised and
efficient data centres, see 4.3.1) is geographic load shifting. To reduce carbon emissions, hyperscale
data centres can shift their workload between geographic locations, where one region has surplus
green energy143. To achieve this, there are some considerations that have to be made, as to how
flexible a workload is, i.e. if the input data is location locked, or if the hardware is specialised
for such a workload, as well as if there are latency requirements144. Locational marginal carbon
emissions have been proposed as an optimal measure for data centre load shifting. Researchers
used this metric as a guide to develop an improved model that shifts loads independently of ISO
collaboration, leading to a significant reduction in carbon emissions145. The model also shows
that shifting greedily, such as only calculating for the next step and dismissing future steps, is
not the best approach, as the current workload may have an impact on following calculations146.

While scheduling can optimise the where and when of training, frameworks like Zeus optimise
how training is executed on a given hardware, as discussed in the following section.

3.5.3 Optimisation Framework - Zeus

Section 3.4.2 introduced a proprietary Optimisation Framework, TensorRT, whose key features are
increasing the efficiency of inference for AI models. In contrast, Zeus, an open-source optimisation
framework, tries to uncover the best trade-off between energy consumption and performance
for DNN training, by finding the best GPU configurations147. Zeus identifies key inefficiencies
in common performance-oriented practices, such as using overly large batch sizes or running
GPUs at maximum power, which often lead to disproportionately high energy consumption
with diminishing returns in performance improvement148. It is an online, plug-in optimisation
framework, which is specifically designed to enable users to find and navigate the Pareto frontier
between energy and training time149. At its core, it includes:

• Dynamic adjusting of two primary parameters:
– Batch size controls the number of samples processed per training iteration150

– GPU power limit controls the energy usage trough dynamic voltage and frequency
scaling151

• Just-in-Time (JIT) Profiling profiles energy and throughput characteristics in real-time
without the need for extensive offline measurements, significantly reducing overhead and
enhancing adaptability to workload changes152.

• Online Exploration-Exploitation Approach utilises a Multi-Armed Bandit (MAB)
algorithm (specifically Thompson Sampling) to systematically and efficiently explore optimal
configurations, adapting to changing data conditions (e.g., data drift) and performance
trade-offs153.

By combining these strategies, Zeus reduces energy consumption by approximately 15.3%–75.8%
across various workloads (see Figure 9), compared to traditional approaches that always maximise

143Lindberg et al. 2022, p. 1.
144Ibid., p. 2.
145Ibid., p. 6.
146Ibid., p. 6.
147You et al. 2023, p. 2.
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149Ibid., p. 14.
150Ibid., p. 3.
151Ibid., p. 4.
152Ibid., p. 6.
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Fig. 9: This illustration shows us a baseline training energy consumption and how combin-
ing both batch size and power limit optimisations (as done by Zeus) can lower the
consumption significantly in some cases. Source: You et al. 2023

throughput and GPU power usage154. Additionally, Zeus reveals a non-linear relationship between
energy savings and training time increases, emphasising the nuanced balance between energy
efficiency and computational performance155. In other words, Zeus finds sweet spots where a
slight reduction in training speed dramatically cuts energy use, providing options for sustainable
AI model training.

3.6 Discussion and Overview
This Chapter explores different techniques, frameworks, designs and optimisations, which can
all be applied to achieve a more efficient AI lifecycle, to lessen the burden on the environment.
To accurately compare the efficiency, it is essential to consider metrics which are consistent in
different environments, including different configurations, which is why Green AI advocates for
Floating Point Operations (FLOPs), as they are the least impacted by external factors156. Often,
getting the best accuracy means disproportionally more computation, as Figure 4 shows. Section
3.2.2 examines the significantly smaller model, DistilBERT and how it manages to retain most
of its accuracy through a technique called Knowledge Distillation (see Section 3.3.3). The goal
is to find the sweet spot, as in most use cases, sacrificing too much efficiency for accuracy, or
vice versa, is typically undesirable. Examining the environment, selecting the proper techniques
and frameworks, depending on the context, is important to achieve truly sustainable AI. The
technical strategies enable policies to require AI system developers and operators to design more
efficient systems and data centres and limit their energy consumption. In the next part, the legal
perspective will be examined, and a deep dive into the regulatory framework surrounding AI and
incentives designed to support its sustainability will be taken.

154You et al. 2023, p. 3.
155Ibid., p. 2.
156Schwartz et al. 2019, p. 6.



Sustainable AI - A Technical, Legal, and Economic Perspective 27

4 Legal and Policy Frameworks for Sustainable AI
Following the exploration of technical innovations and environmental imperatives in the previous
chapters, this chapter now turns to the legal and regulatory dimensions of sustainable AI.
As mentioned in Section 1.2, sustainable AI cannot be achieved from one direction. It is a
multidisciplinary approach, which must be supported by a framework of laws specifically tailored
to it. Effective governance is crucial to ensure that AI development aligns with sustainability
goals, both in terms of minimising environmental impact and upholding ethical standards.

This chapter explores the regulatory landscape surrounding AI with a focus on sustainable and
ethical considerations. It will cover international and EU-level policies aimed at improving energy
efficiency and reducing carbon emissions in the AI and data centre sector. Furthermore, existing
and emerging regulations for AI will be surveyed and global regulatory approaches compared.

Furthermore, a deep dive into ethical considerations with legal implications will follow, ad-
dressing topics such as data privacy and protection, fairness, transparency, and accountability.

The focus then shifts to political incentives for local AI and small data centres. These centres,
distributed across regions, can harness local renewable energy sources and feed their excess heat
into district heating networks, reducing carbon footprint. Regulatory practices will be examined,
which enable partnerships between data centres and sustainable energy providers, supported by
targeted incentives and funding to establish a resilient, low-carbon AI ecosystem. The section
concludes with a case study demonstrating successful waste heat reuse.

The final part highlights policy gaps which must be addressed to truly achieve sustainable
AI. As noted in Section 3.2.1, a standardised metric is crucial for assessing sustainable AI,
and this thesis advocates for its implementation. Furthermore, Section 4.4.3 will examine the
challenges that come with developing a legal framework. It then moves to discuss effective
enforcement, which must be applied to ensure compliance. Lastly, this chapter will plead for
global coordination and equity concerning sustainability and AI governance.

4.1 Existing and Emerging Regulations for Sustainable AI
Despite the rapid growth of AI surprising lawmakers and some hurdles, a number of regulatory
incentives have been introduced or proposed to guide AI toward sustainable and responsible
outcomes. This section will cover international commitments that have been made and then
progressively narrow the focus - first to the EU, and subsequently to Austria’s and Germany’s
regulatory practices addressing sustainable AI.

4.1.1 International Commitments

Section 2.2 has introduced the Paris Agreement, a global pledge to combat climate change. To
the 195 member states, it is a legally binding treaty to limit the temperature increase to 1.5°C157.
While this treaty pressures the ICT sector to address its 5-9% of global electricity use and 2%
of all emissions158, there is no internationally binding treaty addressing sustainable AI. On the
other side, leaders have acknowledged AI and its potential, including the dangers it can bring,
and have presented the first-ever international legally binding ethics treaty. The Framework
Convention on Artificial Intelligence aims to ensure that activities within the lifecycle of AI are
aligned with human rights, democracy and the rule of law, while not halting its technological
progress and innovation159. It requires members to implement principles which AI systems must
follow:

157w.A. 2024h.
158Butler 2023.
159Rotenberg 2025, p. 5.
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• Each member must implement measures that require AI systems to respect human dignity
and individual autonomy160.

• Each member must implement measures for transparency and oversight in AI systems161.

• Each member must implement measures that ensure accountability and responsibility
for wrongdoings162.

• Each member must implement measures that require AI Systems to respect equality and
non-discrimination163.

• Each member must implement measures for privacy and personal data protection in
AI systems164.

• Each member must implement measures which promote reliability from AI systems165.

• Each member must implement measures which foster safe innovation for AI systems166.

In addition, a few soft laws have emerged, a notable one being the UNESCO Recommendation
on the Ethics of AI (2021), applicable to all 194 member states167. Section 4.2 will go more in
depth about legal frameworks regarding ethical considerations.

In summary, globally there is convergence in high-level principles, e.g. ethics and sustainability
highlighted by UNESCO and such, but divergence in implementation, especially regarding
sustainability. No global authority exists, but international pressure and examples, like the EU,
are influencing national policies.

4.1.2 European Union: AI Act, Energy Efficiency and Green Initiatives

Having discussed global principles, which still miss an established international treaty that
addresses both ethical and environmental concerns, the EU is a pioneer and has taken a leading
role in regulating AI.

Its most significant development is the Artificial Intelligence Act (AI Act), introduced
in 2024, which aims to establish a comprehensive regulatory framework for the development
and deployment of AI in the European Union. Its purpose is the upholding of the EU’s values,
by providing a number of requirements including transparency and energy consumption, while
supporting innovation168. The AI Act defines AI systems as machine-based systems that can
operate with varying levels of autonomy169 and general-purpose AI (GPAI) models as AI models,
which have been trained using a large amount of data combined with self-supervision at scale,
thus being capable of performing a wide range of general tasks170. These systems are classified
by their risk, the highest being unacceptable risk (e.g. manipulative, deceptive, etc.), followed
by high-risk, then limited risk and lastly minimal risk. Most of the Act regulates high-risk
AI systems, which refers to systems deployed in critical areas such as education, employment,
and infrastructure171. A provider, referring to a body developing and offering AI systems or

160Framework Convention on AI 2024, Article 7.
161Ibid., Article 8.
162Ibid., Article 9.
163Ibid., Article 10.
164Ibid., Article 11.
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GPAI172, is obliged to several rules, whereas high-risk systems have additional rules. They
must include technical documentation for the AI system, which must include a breakdown of
its energy consumption. If the energy consumption is not known, then it may be based on
computational resources used173. This documentation is to be kept up to date, as the European
Artificial Intelligence Office (AI Office) may request it174; however, GPAI models launched before
the 2nd of August 2024 have a 2-year grace period and are currently exempt from this rule175.
Additionally, some AI systems are classified as ’systemic risk’, referring to GPAI models with
broader reach or potential negative impact on society176. One such impact is energy consumption,
creating an incentive for providers to minimise it in order to avoid additional obligations177.
Article 40 directs EU standardisation bodies to produce technical standards on reducing energy
and other resource consumption of high-risk AI systems and on energy-efficient design of AI
models178. However, these are not yet implemented and may only be voluntary.

Beyond AI specific laws, the European Green Deal, launched in 2019, aims to transform the EU
into a modern, resource-efficient and competitive economy179. It legally binds the 2050 carbon
neutrality and promises to cut at least 50-55% of emissions180. It has more ambitious plans for
climate neutrality, which include investing in clean technology and green infrastructure181. While
it does not directly address AI, the investments may be used as an incentive for implementing
sustainable AI practices or developing more efficient algorithms.

Furthermore, the 2023 revised Energy Efficiency Directive (EED) addresses the broader
ICT sector, which operates AI. In 2018, the total energy consumption of data centres was
76.8 TWh, a figure expected to rise by 28% to 98.5 TWh by 2030. To counter this trend, the
EED urges member states to mandate the collection and publication of data relevant to energy
performance, particularly from data centres with a significant footprint, where a design upgrade
can increase efficiency182.

In summary, the EU is building a multi-layered framework to regulate AI. The AI Act shows us
the first approach to oversee and govern systems. Although it does acknowledge the environmental
impact of AI and introduces obligations for providers to be mindful of its efficiency, it still lacks
technical requirements and standardisations for AI. To properly regulate and require sustainability
in AI, these frameworks must introduce obligatory conditions which address these. This, however,
might be a hurdle to innovation and create an incentive for providers to move to a less stringent
environment, slowing AI progress within the EU. Hardships and Policy Gaps such as these will
be discussed more in depth in Section 4.4. While the AI Act is not yet fully developed, mostly
lacking in mandatory requirements regarding sustainability, it represents a crucial stepping stone
for member states to follow.

4.1.3 Austria’s Regulatory Framework for AI

Building on the EU framework, Austria has implemented its own efficiency act. The country
stands out with a very clean electricity grid, with about 87% of Austria’s electricity coming
from renewable sources183. Clean Energy can thus be used for powering AI, making operations
low-carbon, but there’s still the issue of using energy efficiently. Austria’s climate and energy
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strategy aims for carbon neutrality by 2040, ahead of the EU’s 2050 goal, meaning all sectors
need to optimise energy use. This section will dive deeper into Austrian laws and strategies in
the context of AI and how it tackles energy efficiency.

In the year 2021, Austria launched the AIM AT 2030 mission, a national strategy addressing
AI, shaping the path it will take184. At its core, it revolves around three strategic goals:

1. A deployment of AI for the common good is pursued, based on fundamentals and human
rights, the current and forthcoming European values185.

2. Austria shall position itself as a hub for artificial intelligence research186.

3. Through the development and deployment of AI, the competitiveness of Austria’s technology
and business shall be secured187.

The mission is designed to be agile, allowing for ongoing changes and refinements. At present,
13 fields of action (see Figure 10) and additionally 11 specific application areas (see Figure 11)
have been defined, forming the two foundational pillars: Trustworthy AI and AI ecosystem.
A total of 91 measures are already in planning or put in action188. One of the focus points is
climate neutrality and sustainability through AI. The mission addresses current world climate
concerns and acknowledges that AI is part of it. To achieve a climate-neutral Austria by 2040, it
proposes a Twin Transition, the idea being digitisation and sustainability working in tandem,
instead of as opposing forces189. The implementation plan for the years 2024-2026 includes
47 measures, ranging from funding initiatives such as AI for Tech, AI for Green, and AI for
Transformation, to raising the potential of AI getting directly involved in the federal ministry, as
well as the development of a guideline on Green AI190.

Furthermore, Austria’s Energy Efficiency Act regulates energy efficiency in diverse areas,
one of them being data centres. It does not enforce any efficiency regulations, such as power
usage effectiveness (PUE) or waste heat reuse requirements; however, data centre operators are
required to provide thorough information, including efficiency in energy, electricity usage, and
temperature191.

Fig. 10: The thirteen fields of action form-
ing the foundational pillars, Trust-
worthy AI and AI Ecosystem, of
Austria’s AIM AT 2030 Mission.
Source: w.A. 2024e, p. 10 – trans-
lated from German.

Fig. 11: The eleven application areas form-
ing the foundational pillars, Trust-
worthy AI and AI Ecosystem, of
Austria’s AIM AT 2030 Mission.
Source: w.A. 2024e, p. 10 – trans-
lated from German.
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4.1.4 Germany’s Energy Efficiency Act (Energieeffizienzgesetz - EnEfG)

In contrast to the Austrian Energy Efficiency Act, Germany’s Energy Efficiency Act (EnEfG) has
tighter policies, directly targeting data centres and their climate neutrality. Existing data centres
have to improve their Power Usage Effectiveness (PUE) over time, with 1.0 being the ideal192. In
July 2027 it must be ≤ 1.5 PUE193, tightening to ≤ 1.3 PUE in July 2030194. Data centres which
are to be deployed after July 2026 must present a PUE of ≤ 1.2. Furthermore, they must prove
an energy reuse of at least 10%, increasing to 15% for data centres deployed in 2027 and 20% for
the same in 2028. These targets essentially force data centres to improve their energy efficiency,
implement better cooling designs or reuse their wasted heat. Starting in 2024, at least 50% of
a data centre’s electricity must come from renewable sources195, and by 2027 it must be 100%
renewable196. It is important to note that this can also be achieved through direct purchases
of green electricity, renewable energy certificates or by generating renewable energy themselves.
Additionally, data centre operators must implement an energy and environment management
system by July 2025197. This includes the continuous monitoring of energy consumption198 and
seeking of energy efficiency improvements199. Additionally, they must report key metrics to the
government200, which will be stored in an energy efficiency registry and made public201. They
even have to inform customers about their energy consumption if they use services of a data
centre202.

Compared to Austria’s Energy Efficiency Act, these policies are much stricter and proactive.
However, through the enforcement of efficiency, they push for sustainable data centres and
innovation to help achieve these targets. The transparency policies create accountability and let
customers and regulators see which facilities are efficient, thereby further promoting sustainability.
Any AI service running in a German data centre will indirectly be subject to these efficiency
and green energy rules. Such measures often drive technical innovation and adaptation, as they
must meet sustainability requirements. Technical adaptation is often intertwined with ethical
questions. The following section takes a closer look at ethical considerations in AI and examines
how the regulatory framework, particularly the AI Act, seeks to address them.

4.2 Ethical Considerations with Legal Implications
Ensuring AI is sustainable goes beyond environmental efficiency, as ethical considerations are
just as important. Many ethical issues surrounding AI have direct legal implications. In fact, the
push for Trustworthy AI and Responsible AI intersects with law. This section discusses these
issues and how they are being addressed through legal and regulatory measures. First, it will
emphasise the importance of data privacy and protection and examine regulations addressing
them. Afterwards, it will examine ethical questions and regulations of fairness and bias in AI.
Finally, the importance of transparency is addressed and the section concludes by examining
accountability regulations.

192EnEfG 2023, Article 3(15).
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4.2.1 Data Privacy and Protection

The century-old fight for privacy, illustrated in 12, dates to 1890, when Samuel D. Warren II and
Louis Brandeis introduced the concept of the Right to Privacy, defining it as "the right to
be left alone"203. More than a hundred years later, this principle faces new challenges, as our
personal data is easily collected through our browsing habits and device tracking, creating an
online fingerprint. This can and will be used for targeted advertisement, location-based offers
or more malicious intent, like identity theft. A countermeasure is the concept of data privacy,
restricting which data can be collected and data protection describing security measures that are
to be taken in order to restrict important data access. Section 2.1 outlines how AI consumes an
increasing amount of data, which usually includes personal data and habits, raising once again
the question of privacy and protection.

One of the fundamental principles of The Framework Convention on Artificial Intelligence, is
the respect for personal privacy and data protection. Each signing party must thus implement or
maintain measures, which ensure that the privacy rights of users of AI systems and their data are
protected204. Within the EU, the AI Act works alongside the General Data Protection Regulation
(GDPR) to regulate and protect personal data. The GDPR mandates how organisations and
businesses have to handle personal data or any information which may identify a person205.
The principles of data minimisation and storage limitation also promote sustainability, as they
permit data processing only when necessary for a defined purpose and require that data be
stored in a limited, often compressed form206. Additionally, AI designers are guided towards
privacy-preserving techniques, as the processing of personal data is only allowed with consent207.
This also means respecting fundamental rights such as the right to data access208 and right of
erasure209. A notable law enforcement concerning privacy was Italy banning ChatGPT in 2023
over privacy concerns, underscoring the need for privacy consideration for AI development210. In
a sustainable AI context, strong privacy laws ensure that the drive for more data is balanced
against fundamental rights, encouraging more efficient and ethical data practices.

4.2.2 Fairness, Bias and Non-Discrimination

To fully achieve sustainable and ethical AI, it must be avoided replicating or amplifying biases
that lead to unfair outcomes for certain groups. When using AI for tasks such as hiring, it must
not make decisions on attributes such as race or gender. An unfair AI affects the sustainable
adaptation of AI. This is not only an ethical issue, but also a legal one, as many jurisdictions
have anti-discrimination laws. This section will discuss the existing legal framework, but also
dive deeper into the issue of fairness in AI.

Again, the Framework Convention on AI addresses this, by requiring each signing party to
develop measurements for equality and against discrimination, within the lifecycle of AI211. The
EU AI Act requires that training, validation, and testing datasets used for high-risk AI systems
must be examined for biases that could affect fundamental rights, and that appropriate measures
be taken to detect, prevent, and mitigate such biases212. A regulatory foundation is built to
address the problem of fairness, but the real challenge is that bias in AI is subtle and hard to
detect.

203Warren and Brandeis 1890.
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Fig. 12: This figure illustrates how data privacy and protection has evolved over time. It
started in 1890 with the the right to be left alone, leading to the creation of the
GDPR in 2016. Source: w.A. 2018

Current "fairness" algorithms in AI are critiqued as they rely on institutional categories (e.g.
race, gender and age) and fairness metrics (e.g. demographic parity and equal opportunity)213.
While these are useful, they also have limitations, as they only address data, which in turn
might be biased and ignore real-world issues. As this data is no more than human construction,
it also integrates existing power dynamics. Furthermore, these metrics risk oversimplification
as they are usually too broad to capture real diversity, missing social and contextual issues.
Additionally, the problem of intra- and inter-category inequality persists, as correcting unfairness
within protected groups might disadvantage less privileged individuals in these groups214. To
combat this, researchers have proposed technical fixes such as fair representations. The model is
supposedly missing the context of sensitive variables (e.g. race, gender and age), while still being
highly predictive of the target attribute215. Other scholars suggest more radical approaches.
For example, by reshaping reality tests, procedures (e.g., hiring or scoring) that grant or deny
opportunities, bias can be challenged at its root. Yet this increases opacity, as only experts
can redefine these tests, shifting power away from society216. Instead of yet another algorithm,
researchers propose creating critical spaces, where fairness categories themselves can be questioned
and redesigned, giving power to society217.

Another big issue with fairness and AI is when situations arise that have no correct answer.
This has been a big debate in the self-driving cars department. Imagine a scenario in which a
vehicle suddenly cuts in front of an autonomous vehicle, leaving the only option to avoid a collision
being to swerve into a wall and potentially endangering the AV’s own driver. Which action
should the AV take? This comes down to the infamous trolley problem, where you either harm

213John-Mathews et al. 2022, p. 6.
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one or the other party. Current legal frameworks provide no definitive guidance, highlighting
that fairness is not always a technical question but ultimately a societal and legislative one.

4.2.3 Transparency and Explainability

Over the years, the word transparency has evolved to multiple meanings. At first, it was known
as the physical property of objects which allows light to pass through them. Law and regulation
have given it a new meaning in the 1970s as they gave the public more access to governmental
information, requiring a more open and transparent governance218. It has been a recurring
ethical demand for AI to be transparent and explainable. This meant that users must understand
"when" they are affected by AI and the right to know the "why" behind the outcome.

The EU AI Act sets the regulatory basis and addresses transparency thoroughly and requires
numerous pieces of information to be accessible and interpretable. High-risk AI systems must
have a sufficiently transparent output, as to ensure that their information output is interpretable
and usable by deployers219. These systems are also required to include a complete, correct and
concise instruction sheet220, which contains information such as the system’s capabilities221 and
the resources needed for operation222. Article 50 goes in depth about transparency obligations
surrounding the interaction of users with AI systems. Providers must ensure natural persons
are informed that they are interacting with an AI system if it is not already obvious223. The
generation of audio, image, text, and video content by AI must be marked in a machine-readable
format and detectable as AI-generated224. This addresses a big concern of AI videos or text
flooding the Internet, and fueling the spread of misinformation that is difficult to distinguish
from authentic content. In addition to transparency regulations in Article 50, any affected person
by the decision from a high-risk AI system has the right to explanation, as to why this decision
was made225.

The ethical goal is to avoid "black box" AI, where no one understands the decisions made,
which is unsustainable from a trust perspective. It is also important to highlight the trade-off of
too much transparency, as it can backfire in terms of privacy. By embedding explainability into
law, developers are required to lower the complexity barrier, not only making AI decisions more
interpretable, but sometimes leaner. Less complexity also indirectly translates to resource intensity
(see Section 2.4), thus to more energy consumption. This means the push for explainability
promotes more efficient AI architectures, aligning ethical and environmental sustainability goals.

4.2.4 Accountability and Governance

Ethically, deploying AI requires governance structures that oversee its use, mitigate harm, and
hold systems accountable. Legally, a regulatory basis is emerging in the form of compliance and
oversight. In this section, the legal ground will again be explored, following AI-specific challenges
that complicate the regulation. Before examining the legal mechanisms for AI accountability, it
is necessary to define what accountability means in this context.

At its core, accountability means that you, the agent, must explain and justify your actions
to someone, the forum, who has the right to judge you. The forum then decides if you have
acted properly. Neither the agent, nor the forum, must be a single person - they could be groups,
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organisations, or governments. This usually happens when someone, the principal, gives the
agent a certain responsibility or task226. The accountability given has three key parts:

1. Authority Recognitions: The agent accepts the task they have been given, by the
principal. The principal accepts that the agent has authority. The agent accepts that the
forum can judge them227.

2. Interrogation: The forum must be able to question and examine the Agents actions.
Otherwise, it collapses to self judgement228.

3. Limitation of power: The forum monitors, evaluates and constrains the agent, meaning
it cannot do whatever they want229.

This defines accountability as more than just being responsible, but as a structured relationship
that keeps powers in check and ensures transparency. Only when all three conditions are met,
does accountability work.

A key challenge of accountability in AI is that its outcomes are often opaque and inherently
unpredictable. If an AI system were to infringe on a fundamental right, pinpointing individual
responsibility becomes difficult, as there are numerous points in the process where things could
go wrong, similar to the many hands problem. This infringement could arise from biased training
data, bugs, programmer errors or misuse, making it almost impossible to tell where exactly it
went wrong. Additionally, multiple forums with conflicting judgements raise the symmetrical
problem of many eyes, where either no one is accountable or there is an accountability surplus230.

Legally, the rule of authority recognition is already at the core of democracy. Society, the
principal, has given the EU (or the AI Office), a forum, the right to judge providers (or AI
operators), an agent. To satisfy the second condition of accountability, the AI Act requires a
certain transparency to be upheld by AI systems, as discussed in the previous Section 4.2.3. To
be able to question and examine an AI system’s actions, the Act requires high-risk AI to allow
for automatic record-keeping of relevant events231. Additionally, AI systems must be developed
in a way that allows human controllers to oversee its lifecycle232. Human oversight must be able
to understand the system’s capabilities and detect anomalies233, as well as have the ability to
override the output234 or completely stop a high-risk AI system235. The Act establishes the AI
Office236 to supervise AI providers, alongside national competent authorities tasked with market
surveillance and conformity assessments. This structure constrains providers by designating
oversight actors with enforcement capacity, satisfying the third and last condition.

While the AI Act addresses the many eyes problem by centralising oversight in the AI Office
(supported by national authorities), it still primarily makes providers and deployers liable for
wrongdoings. What it does not yet resolve is the question of civil liability — who compensates
victims if an AI system causes harm, or the many hands problem. This gap has prompted the EU
to propose the AI Liability Directive, which is still being developed. Only with such frameworks
in place can accountability be considered complete, balancing compliance duties with enforceable
avenues for redress.

226Novelli et al. 2024, p. 2.
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4.3 Local AI and Small Data Centres
A notable policy consideration is whether to consider moving data centres from large hyper-scaled
data centres to smaller decentralised data centres hosting local AI. Section 3.5.2 discussed how
energy-efficient data centre design leverages renewable energy to reduce its carbon footprint.
They can be relocated and distributed across multiple decentralised sites powered by renewables,
while additionally making use of their wasted heat. This section examines the pros and cons
of decentralised and hyper-scaled data centres, then explores EU and national incentives and
funding to foster local AI ecosystems. Furthermore, laws which enforce renewable grid integration
and foster decentralisation of data centres will be looked into, and finally, a successful case study
is examined.

4.3.1 Decentralisation vs. Hyperscale

Hyperscale data centres are the primary infrastructure powering AI, and globally there are over
1000 currently deployed237. It refers to massive data centres run by cloud providers, such as
AWS, Microsoft, or Google, designed to scale to thousands of servers. They can handle intensive
global operations, e.g. AI training, with enormous compute power and storage capacity. Their
biggest advantage is their central nature, as resource handling is highly optimised, thus resulting
in efficient and robust processing238. With abundant resources at their disposal, hyperscale data
centres are both highly scalable and reliably resilient. On the downside, their disadvantages
include latency delays caused by constant cloud round-trips and a concentrated energy demand239.

In contrast, decentralised or local data centres distribute resources across different smaller
sites. Their key benefits include:

• Real-Time AI Inference at the Edge: AI infrastructure can be deployed in locations,
where milliseconds matter and latency can have devastating effects240.

• Distributed Model Training: To improve cost efficiency training can be distributed
across sites, which reduced bottlenecks of the central cloud hub241.

• Built-In Data Privacy: Sensitive data can be processed on location, increasing security
and privacy242.

• Resiliency & Redundancy: As infrastructure is spread across multiple locations, having
a single site fallout is not a problem any more, as fault tolerance and geographic redundancy
is gained243.

Decentralised data centres, especially those equipped with on-site energy generation and local
energy storage, can reduce stress on the electrical grid. By operating on renewable sources,
they can be located in regions such as Austria, where 87% of electricity already comes from
renewables244. However, they also bring disadvantages, like operational complexity, as managing
a diverse fleet of servers across locations and different environments is challenging, especially at
scale. Security risks are another issue as there are multiple nodes of entry, and processing large
resources can be quite inefficient, which defeats their purpose245. Indeed, hyperscale centres often
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Fig. 13: This table shows us a direct comparison of centralised AI and decentralised AI,
highlighting their strengths and weaknesses. Source: Cao 2022, p. 8

achieve very low PUE ratios and scale very well in energy usage, which local centres may struggle
to match. This illustrates that sustainable AI infrastructure may require a hybrid approach:
leveraging hyperscale efficiencies where appropriate, while using local centres for latency-critical
or energy-sharing opportunities. However, realising these benefits of decentralisation requires
supportive policies and incentives, as the next sections discuss.

4.3.2 Incentives and Funding

The previous section has examined how decentralised and local data centres are beneficial for
certain applications. Deploying and running a data centre requires a lot of knowledge and
resources, which is why this section will discuss incentives and funding for data centres and AI.

EuroCloud’s mission, a pan-European innovation hub, is a knowledge-sharing network
between European countries to ease the entry to cloud computing, research centres, or start-
ups. Their communication between partners is open, in order to bring IT and businesses
together, thus fostering a European Digital Single Market. By partnering with the EU and local
government, they encourage the development and growth of cloud infrastructure. EuroCloud’s
orientation, guidance, and best practice delivery helps create secure, standards-compliant services,
thus creating incentives for data centre projects246. European countries have developed their
own incentives for cloud services, such as Austria’s O-Cloud Initiative, which is supported by
EuroCloud.

The EU’s Digital Europe Programme DIGITAL is a funding programme aimed at supporting
the green and digital transformation of infrastructures. The programme offers support in areas
such as supercomputing, cybersecurity and artificial intelligence, helping the development of
digital technologies in the EU. However, DIGITAL is not the only funding programme focused on

246w.A. n.d.
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digital innovation. It is complemented by several others that aim to enhance the EU’s industrial
competitiveness and reinforce its sovereignty. Together, they provide potential funding pathways
for AI and data centre projects focusing on sustainability and innovation247.

Austrian AI Infrastructure AI:AT is a nationwide incentive that aims to strengthen Austria’s
digital competitiveness and sustainable AI ecosystem. It aims to build a nationwide AI hub by
linking research, business, and public institutions, with state-of-the-art infrastructure targeting
local businesses. This initiative provides institutional support and could serve as a catalyst for
decentralised AI infrastructure development248.

4.3.3 Energy Law and Grid Support

Energy law and smart grid infrastructure policies that enable data centres to reuse their wasted
heat or enable better integration of renewable energy play a decisive role. This section will
discuss how Austria and Germany envision a sustainable grid infrastructure and examine their
existing policies and energy law supporting this.

The Austrian Elektrizitätswirtschaftsgesetz (ElWG) aims to modernise its electricity market
by supporting decentralised, sustainable and consumer-centric energy systems. It intends to
implement the EU’s internal Electricity Market Directive, Renewable Energy Directive and Energy
Efficiency Directive into Austrian legislation. The draft recognises peer-to-peer contracts, allowing
data centres to buy renewable energy directly from a producer249. Additionally, producers are
allowed to construct direct electricity transmission lines, so data centres can directly leverage
clean energy250. In combination with the recognition of renewable energy communities251, these
policies empower decentralised actors such as data centre operators and enable more flexibility to
go green. Furthermore, providers may refuse grid access due to lack of capacity or disturbances in
the grid252. If full access cannot be granted, the operator must offer flexible or limited access253.
This creates a legal framework for versatile grid access, promoting once again renewable energy
integration.

While the ElWG does address decentralisation and data centres, it is still a draft, whereas the
German EnEfG, examined in Section 4.1.4, has already entered into force. It does not directly
address decentralised data centres and local AI, but it fosters the development of such through
various policies. Companies, including data centres, must avoid waste heat as far as reasonably
possible254. This includes reusing it inside their premises or piping it to third parties255. Data
centres in particular are required to utilise a portion of their energy/wasted heat. As it has been
mentioned in Section 4.1.4, newer data centres must reuse at least 10% of their energy, rising to
20% for data centres deployed in 2028256. Furthermore, data centres are required to implement
an energy and environmental management system, forcing them to:

1. continuously measure the performance and energy requirements of its components257.

2. take action to continuously improve its energy efficiency258.
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However, data centres are exempt from implementing this system if they show 50% of their
energy reuse integrated into a local grid system259. These policies encourage operators to capture
the heat their servers generate and supply it to nearby homes or businesses, indirectly fostering
decentralised data centres. By integrating data centres into local energy systems, policies support
a symbiotic relationship: the data centre gets clean power and the community gets excess
heat/energy or grid stability services. Following this section will be a successful case study that
shows waste heat reuse in practice.

4.3.4 Case Study - Digital Reality

Digital Reality is a sustainability project in Vienna focusing on converting its wasted heat into
usable energy. They partnered with a clinic to reuse their data centre’s wasted heat and supply
the building with it. In combination with the reduced heating costs of the clinic and the reused
heat of the data centre, they managed to save 4,000 tons of CO2, yielding sustainable profit for
both260. Their project consists of four steps:

1. Capture the wasted heat of their server261.

2. Lead the heat through a heat exchanger, bringing it to a useable temperature262.

3. Integrate the heat into a local energy grid263.

4. Reuse the heat, such as heating for a building264.

While they acknowledge the difficulty, they list advantages such as energy efficiency, cost
reduction, carbon footprint reduction and sustainability, and appeal for similar laws, as pre-
sented in the EnEfG, forcing such a practice by law265. This case study shows us a successful
implementation of waste heat reusing and additionally highlights missing policies in Austrian
law, such as the missing heat reuse policy in Germany’s EnEfG (see 4.1.4). The next section
delves deeper into policy gaps, focusing on shortcomings in enforcement and compliance, while
also examining possible future directions and challenges for legal frameworks.

4.4 Policy Gaps and Future Directions
The previous sections discussed the regulatory framework addressing AI and data centres, with a
focus on sustainability and efficiency. It then moved to ethical questions and policy considerations
and finished with exploring decentralised data centres and local AI. Throughout the section
and this thesis, missing policies were highlighted, which this section dives deeper into. Current
regulations only partially address the challenges outlined, and new strategies will be needed
to fill these gaps. This section identifies the major shortcomings in today’s legal frameworks
and discusses potential directions for future policy and research. It will start by addressing
these policy gaps in AI regulation and further advocate for the need for standardised metrics.
Additionally, it will emphasise how enforcement is important to achieve compliance. It then turns
to the challenges inherent in legal frameworks and concludes by highlighting the risks posed by
lacking global coordination.
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4.4.1 Policy Gaps in AI Regulation

As discussed in section 4.1.2, the EU AI Act introduces transparency requirements, but overall
it lacks enforcement of sustainability. It opened the doors for codes of conduct, making use of
different actors in AI development. However, they lack the incentive for compliance, rendering
them voluntary in practice. Other jurisdictions have even less in place, highlighting an imbalance
in regulation. Governments are pushing for AI regulations but miss explicitly incorporating
sustainability or environmental considerations266. A clear gap is the missing policy for AI
developers requiring them to minimise carbon footprint, resource use, or efficiency requirements.
Policymakers should consider setting enforceable measures, e.g. setting energy efficiency bench-
marks, perhaps similar to Corporate Average Fuel Economy (CAFE) regulating how far a vehicle
must travel on a gallon of fuel267. Another policy could mandate that companies must report
carbon emissions or energy consumption of training large models, providing the option to choose
sustainability. Training of models could also be restricted to achieve a sustainable percentage, e.g.
only training when enough renewable energy is available268. Scholars suggest a more innovative
approach, like sustainability by design, stemming from the GDPR’s privacy by design. Just
as the GDPR requires companies to embed privacy into system architecture, AI regulation
should require sustainability considerations to be built into AI models and infrastructures from
the outset269. Sustainability Impact Assessments (SIAs) would require developers to assess
and disclose the environmental footprint of their AI system and firms to incorporate efficiency
and resource-saving measures into model architecture, training processes, and deployment270.
While similar suggestions are still emerging, the critical challenge lies in correctly assessing and
crafting policies that do not hinder AI development or drive companies to relocate to more
lenient jurisdictions. Section 4.4.3 will analyse and discuss these challenges more in depth. The
following section will advocate for the importance of metrics and the need for its standardisation.

4.4.2 Standardised Metrics and Disclosure

A recurring theme is the lack of standardised metrics for measuring AI’s sustainability. Companies
may use different methods and different standards to calculate, e.g. CO2 emissions for training an
AI model, making it difficult to compare. Section 4.1.4 discusses the PUE requirement for data
centres in Germany, which lowers the difficulty of comparing their sustainability. The absence of
standardised reporting means that even when disclosure is encouraged or required, compliance
might be inconsistent.

Experts have been advocating for standardised metrics in various areas, as it prevents miscom-
munication when different departments or international teams use different units of measurement,
enhances accuracy by using consistent measures, or saves money by avoiding mistakes due to
wrong metrics271. A famous mix-up is the 1999 NASA’s Mars Climate Orbiter, which was
unsuccessful as the spacecraft got lost on arrival, which was due to a mismatch of units on the
ground and on board272.

Standardised AI sustainability measurements could be achieved through international standards
such as ISO/IEC or with regulations. The challenge lies in finding a consistent method and metric
for measurement that can be applied across all AI systems. Section 3.2.1 discusses the Green AI
approach and compares different metrics. This approach advocates for FLOP(s) as a primary unit
of measurement. While it offers many advantages, it is important to not overlook complementary
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metrics such as CO2 emissions. Its disadvantages include the unpredictable outcomes, varying
with factors such as time, location, and equipment. Yet, with proper standardisation of these
parameters, it could demonstrate consistency comparable to FLOP(s). Future regulations might
combine both FLOP(s) and CO2 emissions to capture not only how much computation is
performed but also what its environmental cost is. Once they are defined, regulation can require
the transparent disclosure of those metrics, e.g. in the AI Act. Regulations could follow a similar
approach as Germany’s EnEfG (see Section 4.1.4) for data centres, where laws could mandate
that AI models publish their metrics in a public registry. This creates market pressure for
efficiency and sustainability as investors and consumers can compare AI services on these metrics.
Through clearer metrics and stronger standardisation, AI regulations are coming closer to truly
sustainable practices. However, regulations and compliance are only as strong as the enforcement
of them. Subsequently, the next section will discuss how enforcement plays an important role in
regulation and other challenges, such as finding a balance between regulation and freedom.

4.4.3 Challenges for Legal Frameworks

Throughout this thesis, the rapid growth of AI has been examined and discussed. This growth
challenges legal frameworks, as, due to its nature, law can lag behind. This section summarises
the challenges discussed so far and introduces new ones.

Even the best-crafted policies mean little without effective enforcement. It is complicated
to ensure compliance, as regulators need technical expertise and resources to audit AI systems
for energy use and ethical compliance. Future efforts might include establishing specialised AI
sustainability audit bodies to conduct energy and ethical checks on AI systems. The EU’s AI
Office could be one such enforcement body, but it would need sufficient expertise for sustainability
checks. However, positive incentives could complement penalties to encourage AI developers
and deployers to push for efficiency. Governments can drive sustainable AI through funding and
procurement, by e.g. providing grants for energy-efficient AI algorithms or easing regulation
when sustainability goals are met. By aligning economic incentives, such as electricity pricing,
carbon taxes or credits, with AI usage, companies can be encouraged to optimise. It is important
to find a key balance between what can be done and what can’t, posing a challenge for legal
frameworks. These incentives will be discussed more in depth in Chapter 5.

Section 4.1 shows how currently, regulation mostly focuses on data centres powering AI and
targeting their energy efficiency and resources. AI models themselves are mostly addressed
ethically. Finding the balance between regulation and freedom will be challenging for lawmakers.
The absence of sustainable AI regulations could carry serious repercussions for the environment.
However, too strict regulations could hamper the development of AI, wasting its potential. It is
important to note that stricter regulations can lead AI developers and businesses to shy away
to areas with laxer regulations. Companies seeking faster growth or higher profits may simply
withdraw from tightly regulated markets and shift operations to these more non-restrictive
environments. This is a general rule as the very recent relocation from Austria of Ryanair and
Wizz Air shows. They argued that the cost of operation in Austria, particularly the aviation tax,
is too high and leaves no room for growth273. In this case it might be in some ways beneficial for
the environment, but not beneficial for Austria in every scenario. Future law could encourage
firms with, the already mentioned, economic incentives when obliging law and meeting goals.

Another problem arises when inspecting AI itself. Section 4.2.4 discusses how AI, by nature,
is unpredictable, raising the many hands problem. The many hands problem is described as
many different actors contributing in many different ways to outcomes, making it difficult to
blame any actor274. Traditional law assumes a clear agent to hold accountable. AI’s design
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and operation, however, are spread across developers, data curators, regulators and users275.
This shows that our current regulatory frameworks do not yet translate well to AI’s opaqueness.
Imagine a patient is diagnosed by a doctor who uses and is allowed to use AI, but it is faulty,
raising the question of who is responsible. Some scholars suggest that legal frameworks must
move beyond pinpointing an individual at fault and instead support mechanisms of challenge,
redress and systemic oversight, accounting for AI’s unpredictable behaviour276.

In summary, the rapid growth of AI and its unpredictability brings great challenges for
legislatives. As it has been made clear, the biggest challenge lies in balancing restrictions to
not hinder the development of AI. Following this analysis of challenges for legal frameworks is
another challenge nations have to overcome to achieve sustainable AI.

o

4.4.4 Global Coordination, Equity and Conclusion

AI is a global industry, which is dominated by a few nations, but its environmental and social
impacts are distributed worldwide, often unequally. Current regulations are split, with only a
few international obligations, whereas most regulatory efforts are led by the EU. There is a risk
of lacking regulations where enforcement is not developed, drawing in bad actors to exploit a
lenient regime. Regimes with lacking or no regulations at all could become a dumping ground
for inefficient hardware, out-dated and energy-hungry AI models. Future law should lead with
global coordination and an equal distribution of responsibility for sustainable AI, potentially
through the G20 or United Nations, much like the Paris Agreement (see Section 2.2). Engaging
the US, China, and other leading AI nations will be essential, as otherwise, efforts may remain
fragmented. While non-binding agreements (e.g. UNESCO) are a start, eventually, agreements or
national policies may be needed. Ensuring equity is also crucial. Most of the resource extraction
and e-waste of AI burden communities usually far from AI’s beneficiaries277. Their voices must
be included in shaping regulations that hold AI producers accountable for their impacts.

In conclusion, there are many gaps in policies which are still being worked on or yet to be
addressed. Despite the progress achieved with instruments such as the EU AI Act, significant
gaps to govern sustainable AI still remain. Most frameworks still focus on compliance and
innovation while overlooking standardised sustainability metrics, binding efficiency targets,
and the integration of AI into broader climate and energy policies. Globally, there is still a
considerable amount of work for regulators to do. Closing these gaps requires moving from soft
law to enforceable rules, backed by incentives for greener AI design and stronger international
cooperation. Only then can AI governance evolve from emerging regulations into a solid
framework that truly aligns technological progress with sustainable development. Bridging the
policy gaps identified above with the technical innovations discussed in Chapter 3 is crucial.
However, providing economic incentives for companies developing AI will be key to achieve its
sustainability. Only a synergy of technical efficiency measures, robust legal frameworks and
economic incentives will truly align AI development with sustainable development goals. The
next chapter turns to a closer examination of such incentives.
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5 Aligning Economic Incentives with Sustainable AI
AI’s rapid growth has brought unexpected social, environmental, and legal challenges, but it has
also opened up opportunities for businesses across many sectors. This spans from developing
proprietary systems to simply implementing ready-made solutions into daily work routines. Many
companies have also expanded their products and services by embedding AI features, whether
through intelligent assistance, predictive analytics, or automated decision-making tools.

Following the core analysis from a technical and legal perspective of sustainable AI, this chapter
evaluates it through an economic lens. Addressing the challenges of sustainability requires aligning
economic incentives at both macro and micro levels with suitable and appropriate goals. To
achieve these goals, governments, industries, and companies must work towards increasing the
efficiency of AI and reducing its carbon footprint.

This chapter starts by analysing how companies are increasingly implementing sustainability
goals in their firm-level decision making. Many have recognised that energy efficiency and carbon
reduction directly translate to cost savings. By optimising energy efficiency, choosing appropriate
hardware, and utilising smart cooling, companies can considerably lower the operational costs of
AI while simultaneously reducing their environmental impact. Section 5.2 builds on the findings
from Chapter 3, linking technical strategies to economic incentives for businesses.

The chapter continues by investigating how AI development, combined with sustainability
initiatives, can spur innovation. Inherently, these initiatives often spark technical innovation.
Furthermore, strategic innovation to gain a competitive advantage over other firms is another
powerful driver of sustainability efforts. An analysis of business opportunities that have emerged
due to sustainable efforts and incentives for AI will conclude the section.

Finally, a discussion on how the alignment of macro and micro incentives is crucial to achieving
sustainable AI will follow. The discussion will examine how regulations can help shape incentives
for sustainable AI business practices. The idea of carbon prices and energy taxes, as well as
subsidies and R&D support, will be explored.

5.1 Sustainable Decision-Making
The adoption of AI has become increasingly important for companies, as 61% of investors
believe that its incorporation into their lifecycles is significant for the future, despite its risks278.
Furthermore, at the firm level, incorporating sustainability into their strategies is seen as vital
for long-term value. Thus, operations that are energy efficient and low-carbon have become
prevalent, as companies are starting to embed environmental objectives to remain competitive.
A 2023 investors survey showed that 75% of investors consider how firms manage sustainability
risks and opportunities279. Crucially, they are interested in how sustainability is integrated
into their business model. They argue that companies should invest in sustainability, even if it
entails a short-term reduction in profits280. In the context of AI adoption, this means sustainable
practices yield dual benefits: cost savings through energy efficiency and stronger stakeholder
relationships via improved sustainability. In practice, many companies are already prioritising AI
implementations when making capital investments. However, a rising interest in sustainability
practices can be observed, as approximately 40% of CEOs are focusing on them281. By treating
sustainability as a core strategy, firms can future-proof their AI deployments and avoid later
expenses. The next section will examine the operational cost of energy efficiency and how AI is
tied to it in more depth.
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5.2 Operational Efficiency and Cost Savings
A primary economic incentive for sustainable AI is improved operational efficiency, which directly
translates to cost savings. As section 2 discusses, AI greatly impacts the environment due to
its massive energy consumption, both in training and operation. However, a recent large-scale
study of Chinese firms shows strong empirical evidence that AI adoption is strongly connected to
reduced energy consumption. For every 1% increase in AI use, overall energy consumption drops
by about 0.48%, primarily through green innovation282. This suggests that AI, when deployed
with efficiency in mind, can optimise operations and cut resource waste. It can dynamically tune
processes to save energy, a task that would otherwise be tedious and time-consuming for human
operators. For example, idle servers can be turned off, cooling can be optimised, or supply chains
streamlined. This section will examine how operational costs can differ when operating AI with
efficiency in mind.

5.2.1 Sustainable Data Centre Practices

The operational cost of data centres largely consists of their electricity consumption, as discussed
in Section 3.4.3. Since data centres typically power AI systems, their operational costs can be
reduced through sustainable AI practices.

The MIT Lincoln Laboratory’s Supercomputing Centre demonstrated that pairing sustainability
measures with AI workloads can cut both energy use and expenses. They tested a range of
measures to cut energy costs and found that, when implemented, data centre emissions can
be reduced by 10%-20%; most importantly, without significant capital investment283. In other
words, by reducing AI’s energy use, operational expenses can directly improve the bottom line.
A simple change includes opting for more efficient hardware, as discussed in Section 3.4.1. If this
is not possible, firms can experiment with power capping or limit the power available, depending
on the tasks. The lab managed to reduce the overall energy consumption of AI workloads, thus
lowering cooling demand284. Similarly, rethinking model training routines yielded significant
savings. By developing a tool that allows for early stopping once convergence is predicted, 80%
of the computation could be eliminated, with no loss in accuracy, translating to substantial
energy and cost savings. In summary, these sustainable and efficient practices for AI demonstrate
how they directly cut operational costs and lower the environmental impact at the data centre
level285.

5.2.2 Data Centre Infrastructure

Apart from sustainable data centre practices, data centre infrastructure optimisation yields
further economic benefits. Section 3.4.3 discusses how smart resource distribution and modern
cooling systems can reduce energy consumption. Sometimes, there are too many dimensions for
human operators to evaluate consistently. AI systems can assist by processing this complexity
and supporting more effective decision-making. This section will outline the successful integration
of smart infrastructure, where AI was used efficiently to reduce energy consumption in resource
management and cooling.

A famous example is Google leveraging its DeepMind AI to manage data centre cooling,
achieving up to a 40% reduction in energy usage286. They accomplished this by collecting historic
data, such as temperature and power, and furthermore applying machine learning, utilising the
data to optimise PUE. Additionally, two other models predicted the temperature and pressure of
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their data centre, to avoid overshooting any operating constraints. This setup was deployed in a
live data centre, consistently achieving a 40% reduction in energy consumption for cooling287.
This translated to a 15% increase in overall PUE, which is essentially an enormous cut in the
electricity bill for an already very optimised data centre288. DeepMind continued to learn and
adjust cooling parameters, effectively outperforming human operators in squeezing out efficiency.

Other firms replicated this approach by using AI for energy management. Hilton and ei3
developed LightStay, an AI-driven energy management platform used to monitor and reduce
energy, water, and waste across thousands of hotels. This initiative led to over 1 billion
dollars in cost savings in about a decade, over a 20% reduction in water and energy usage,
and a 30% reduction in carbon emissions and waste output289. They achieved these results
through an automated alert system that triggers when performance falls below expected levels, a
comprehensive impact tracking system allowing for the monitoring of vital metrics, and a global
footprint assessment of various events290. These features fostered a sustainable environment
while allowing for ongoing high performance.

In summary, these case studies illustrate that businesses can employ AI-driven optimisation
even in already well-run operations to save money and future-proof their facilities. They show
how AI-based efficiency measures scale across industries to deliver cost savings at the firm level.

5.2.3 Hardware Choices

Hardware choices also play a crucial role in the cost structure. Section 3.4.1 analyses different
hardware components and their effectiveness for AI operations. Figure 14 illustrates that by
choosing accelerated computing hardware, such as TPUs or specialised FPGAs, AI and high
performance computing (HPC) tasks can be performed far more efficiently than with legacy CPUs.
In other words, by investing in modern hardware, firms can yield long-term gains. NVIDIA
reports that by transitioning to accelerated hardware for their servers, they can save over 40 TWh
of energy annually for HPC and AI workloads, equivalent to what nearly 5 million U.S. homes
need for electricity291. Another example comes from a financial services company, Murex, which
found that integrating NVIDIA’s specialised Grace Hopper Superchip yielded a 4× reduction
in energy consumption and a 7× faster computation speed compared to traditional CPU-based
systems292. In data analytics, GPU acceleration of Apache Spark was shown to cut power use by
5× and infrastructure costs by 4×, saving a typical enterprise nearly 125 million dollars and 10
GWh over a period of use293.

At the firm-level, these efficiency gains translate to powering AI workloads with fewer servers,
thereby reducing operational costs. Even if efficient hardware costs more upfront, the energy sav-
ings it delivers reduce operating expenses and ultimately increase profits, making the investment
pay off. Firms that aggressively adopt efficient algorithms and hardware can achieve a structural
cost advantage over competitors still using energy-hungry setups.

In summary, sustainable AI practices contribute to leaner operations, meaning fewer resources
and fewer redundant processes. By slashing energy and resource waste, firms can reduce operating
costs, indirectly recouping their investments in green technology. Energy-efficient AI aligns
with profit motives, as a lower carbon footprint frequently also reduces electricity consumption
and hardware requirements. It improves ROI for AI and can free up the budget for further
innovation. This highlights cost efficiency as one of the strongest drivers for companies to pursue
sustainability in their decision-making, especially when adopting AI.
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Fig. 14: This figure illustrates the energy-efficiency gains for the most efficient supercom-
puter. This was possible due to the use of specialised hardware. Source: Harris
2024

5.3 Sustainable Innovation and Competitiveness
Innovation has always propelled society forward, enabling technological evolution. It spans
from the creation of tools in the Stone Age to ENIAC, the first digital computer, in 1940294.
Today, AI might stand as the next great turning point. Sustainable AI, in particular, sparks new
forms of innovation by demanding greater efficiency, both in technical design and in strategic
approaches. At the same time, it creates new business opportunities as firms experiment with
new products, services, and models to align profitability with sustainability. This section explores
how sustainable AI acts as a catalyst for innovation in these three dimensions.

5.3.1 Technical Innovation

The need to make AI more efficient often drives technical innovation. Section 3.3 analyses
different model compression techniques, which were mainly accelerated by the desire to maintain
model accuracy while cutting computational costs. A recent study shows that by applying model
compression techniques to large NLP models, like BERT (see Section 3.2.2), a 32% reduction in
energy consumption can be achieved while maintaining high performance295. Similarly, its distilled
student model, DistillBERT, achieved comparable performance. By combining two compression
techniques, knowledge distillation and pruning, it achieved a 6.7% energy reduction, despite
already being highly compact and efficient296. These innovations mean that companies can offer
AI services that are cheaper to run but still high-performing. For example, a startup that provides
AI predictions but uses a highly optimised model might offer a lower price or a sustainability
guaranty to customers, undercutting competitors who require more compute resources. In this
way, sustainable AI methods can become a source of competitive differentiation. This underscores
the tight interplay between technical innovation and economics, as competitiveness sparks further
innovation, and those innovations enable better offerings and cost savings.

294McCartney 1999, p. 1.
295Paula et al. 2025, p. 1.
296Ibid., p. 1.



Sustainable AI - A Technical, Legal, and Economic Perspective 47

5.3.2 Strategic Innovation

The Porter Hypothesis in environmental economics posits that environmental challenges can
stimulate innovation that eventually improves both environmental and business performance,
essentially translating to the idea that environmental regulations can spur innovation and
efficiency297. This hypothesis is mirrored through sustainable AI, as limited energy budgets and
carbon targets push companies to innovate AI algorithms and infrastructure.

Microsoft’s case provides evidence, as the pledge to be carbon negative by 2030 has forced
new innovation. Their engineers are re-architecting how AI workloads are scheduled, introducing
AI-driven global schedulers and power harvesting techniques that didn’t exist in traditional
cloud operations. Project Forge is an AI scheduler that achieved 80-90% GPU utilisation by
intelligently scheduling AI jobs during times when resources are idle298. The result is not only an
environmental win, but also a competitive one, allowing their cloud platform, Azure, to handle
more demand without proportionally expanding its servers. Microsoft also implemented power
harvesting in their data centres, reallocating unused power from over-provisioned workloads to
other tasks, which reclaimed 800 MW of capacity since 2019, a technique discussed in Section
4.3299.

Likewise, Google pledged to be carbon neutral by 2030 and developed carbon intelligent
computing, which moves flexible computing tasks across time and geographies to use cleaner
energy when available300. This required new software and forecasting innovations, such as models
that predict hourly grid carbon intensity. Google can now offer cloud development customers the
ability to run their tasks when renewable energy is abundant, effectively lowering or negating
their carbon footprint301. This capability may attract environmentally conscious clients, thereby
becoming a market differentiator.

Through their own carbon pledges, these firms have pushed themselves to innovate sustainable
practices for their data centres. Their advancements were not only beneficial for the environment
but also proved to bring a competitive advantage, as they can either attract environmentally
conscious customers or offer services and products at a lower price. Furthermore, these innovations
foster new development, which, in turn, offers new business opportunities, discussed further in
the following section.

5.3.3 Business Opportunities

As sustainable AI continues to advance, it demands greater innovation, thereby creating new
products and opening new market opportunities. The pressure to be carbon neutral rises
while the timeline to achieve it is shrinking. Companies have realised the importance of AI in
creating a carbon-neutral space and have started seeking solutions to optimise energy usage,
design greener products, or manage carbon emissions. Section 5.1 discusses how investors and
AI buyers are primarily interested in sustainable practices and companies AI adoption efforts.
Proficiency in such practices can be leveraged to offer new services. For instance, NVIDIA has
positioned itself as a leader in sustainability through their push for energy efficiency in their
chips and now markets their hardware for enabling sustainability efforts302. As their GPUs and
software explicitly promise both performance and energy efficiency, they appeal to customers
with environmental, social, and governance (ESG) goals. Another example is the opportunities
that efficient AI brings to firms focusing on energy management. DeepMind’s success with their
AI cooling management not only saved money but also created a template that could be applied
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in other locations. Indeed, the team behind DeepMind noted that these methods could help any
data centre improve efficiency303. Similar opportunities arise in the automotive AI space, as
the push for energy efficiency to prolong battery life could be achieved through low-power AI
accelerators, once again giving companies with sustainable know-how an advantage.

From a microeconomic standpoint, innovation driven by sustainability can upgrade a firm’s
competitive standing. It can yield unique capabilities, such as efficient algorithms and tools
for optimisation, which rivals may lack. Furthermore, by operating and developing AI with
efficiency in mind, one can also future-proof their company against evolving regulations or resource
constraints and additionally appeal to sustainable customers. A firm capable of handling more
computation with less power will face lower carbon taxes and energy costs than one burdened
by inefficient, power-hungry AI systems. Moreover, by achieving efficiency first, firms can set
industry benchmarks and shape standards. They can be placed in a leadership position, as their
practices become gold standards, forcing others to follow in their footsteps.

Section 5.2 discusses empirical evidence on how the adoption of AI can facilitate innovation in
sustainability. AI can function as a green-enabling dynamic capability, as companies adopting AI
also tend to boost their green innovation304. It helps firms design cleaner processes and products,
aligning with the idea that it can unlock new ways to meet environmental challenges305. A study
found that green innovation was a key mechanism by which AI adoption led to reduced energy
consumption at firms306. It can again be concluded that AI and sustainability are not only
beneficial for the environment but also for the electricity bill.

In summary, sustainable AI can be a catalyst for innovation. Firms that embrace the challenge
of using and developing AI in a sustainable way often end up with more efficient technology,
processes, and know-how. It strengthens competitiveness, lowers costs, and improves resilience.
As public concern for the environment grows and more customers demand sustainable products,
adopting sustainable AI practices becomes a natural necessity. This means that doing good
for the environment can also mean doing well financially at the firm level. By setting industry
standards, companies may benefit from lower policy-related costs, such as carbon or energy
taxes—which are discussed as incentives for sustainability in the following section.

5.4 Integrating Legal and Economic Approaches
Throughout this chapter, it has been illustrated how technological innovation strongly pushes
economic incentives. Crucially, macro and micro incentives reinforce each other when properly
coordinated. Legal frameworks provide external pressure and support, e.g. through standards,
penalties, or public investment, while economic self-interest embraces innovation. For instance, a
policy mandating the reporting of energy consumption, such as Germany’s EnEfG (see Section
4.1.4), establishes accountability. Due to the competitive nature of markets, each firm tries to
outperform its rivals on those metrics in order to attract investors. Likewise, if governments set
a carbon price or efficiency standard, companies have the certainty needed to invest in long-term
energy-saving innovations. In effect, policy pulls and market pushes can align toward the same
goal. Chapter 4 has thoroughly discussed the legal frameworks surrounding AI and sustainability,
whereas Section 4.4 examines policy gaps and features some incentives for businesses. This section
will further examine how policymakers can encourage sustainable AI practices for businesses
through taxes, subsidies, and regulations that alter the cost of operating AI sustainably.
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5.4.1 Carbon Pricing and Energy Taxes

A recent effort to reduce emissions has been the taxation of greenhouse gas emissions. The
Carbon Tax is a law-mandated tax that targets operations emitting greenhouse gases, essentially
placing a price on carbon emissions. In 1990, Finland was the first country to introduce such a
tax, and since then, 23 European countries have implemented some form of carbon tax307. The
scope of the carbon tax usually differs between countries, as some only target a small percentage
of their carbon emissions, while others cover more than half308. To combat the variety, the EU
decided to implement a unified system called the Emissions Trading System (ETS). It is based on
cap and trade, where the cap refers to a limit on greenhouse gases that can be emitted. Companies
affected by the ETS are therefore encouraged to implement sustainability measures, as they
must pay heavy fines if they cannot account for their emissions309. Currently, only the sectors of
electricity and heat generation, industrial manufacturing, aviation, and maritime transport are
covered by the EU ETS310. Given that most new policies require data centres or AI systems
to disclose their emissions (see Section 4.1.2), it could be considered to bring these sectors into
the scope of the ETS. This would urge data centre operators and AI companies to implement
sustainability practices throughout their lifecycle in order to avoid heavy fines. However, data
centres and AI systems primarily consume electricity and do not burn fuel, making them low
direct carbon emitters.

Some economists thus advocate that a broad climate price is one of the most effective tools
for curbing emissions, as it encourages reduced fossil-fuel consumption. For data centres, the
International Monetary Fund (IMF) estimates that a targeted electricity tax of $0.03 per kWh
could significantly cut their carbon footprint311. This would internalise the environmental cost of
running power-hungry AI workloads, nudging companies to optimise their compute for efficiency.
However, this does not represent the status quo of today. Many jurisdictions offer tax breaks
and incentives despite their high energy usage to lure data centre investments.

For example, the U.S. state of Indiana passed a bill in 2019 that offered a 7% tax cut for data
centre operators when purchasing resources312. Today, nearly all U.S. states have implemented a
similar tax break for data centres, and these investments are projected to reach one trillion dollars
by 2027313. These incentives are being re-examined as their public benefits come under question
and are not tied to any goals. Data centres have growing concerns, such as their environmental
impact through energy consumption, while offering very few long-term jobs314. In 2024, lawmakers
from Georgia proposed a bill that would pause tax breaks for data centres in order to evaluate their
impact on the environment. Though the proposal was vetoed in the end to maintain investment
flow, it underscores a shifting attitude toward more conditional, sustainability-oriented incentive
policies315. Instead of providing tax breaks without any requirements, policies could consider
offering subsidies that are tied to sustainability goals.

5.4.2 Subsidies and R&D Support

On the flip side of using penalties to encourage sustainable practices, governments could use
financial incentives to accelerate the development and adoption of greener AI technologies. This
might include subsidies for companies that invest in energy-efficient hardware, algorithms, or
infrastructure. For example, public policies can provide R&D funding and innovation prices
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for new techniques that reduce AI’s energy consumption. Policymakers can thus lower the cost
barrier for firms to pursue efficiency.

The EU is once again a pioneer, as it has initiated the European Green Deal, discussed in
Section 4.1.2, which has pledged to invest at least 1 trillion euros into sustainable investment316.
As part of its agenda, there are investments in energy-efficient AI R&D called GREEN.DAT.AI.
The EU is funding the project, which is a consortium of 17 organisations developing novel AI
techniques that use less energy and reduce environmental impact317. It explicitly aims to channel
AI towards the goals of the European Green Deal by creating large-scale data analysis services
that are more energy-efficient for industry, thereby cutting the carbon footprint of AI and data
processing318.

Similarly, the U.S. has started backing research on sustainable AI. In 2024, the U.S. Department
of Energy announced a $68 million funding program for AI in scientific research319. This includes
the development of energy-efficient AI algorithms and hardware that use fewer resources.

The intervention of law-makers is particularly important, as letting the market determine
the shape of AI may be too risky. If there are no incentives for the research and development
of sustainable AI, then AI might not take a turn towards the public good320. In conclusion,
fostering sustainable AI is as much an economic and legal challenge as it is a technical one.
Well-designed legal incentives set the stage by rewarding low carbon operations while penalising
wasteful ones, and economic incentives encourage businesses to adopt greener practices. Efficiency
is the key connection, as it reduces energy consumption, lowers carbon emissions, and serves as a
source of cost savings. To achieve sustainable AI, it must be ensured that technical advances
make it possible; subsequently, economic factors and legal frameworks must make it standard
practice. This multidisciplinary approach will be crucial to guiding AI development onto a more
sustainable trajectory for the future.
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6 Discussion and Conclusion
The technical advancements in sustainable AI discussed in Chapter 3 allow for stringent regulations
that focus on efficiency instead of accuracy. Conversely, sustainable policies promote technical
innovation by creating requirements and standards. For example, Germany’s Energy Efficiency
Act mandating PUE requirements for data centres forces operators to invest in smart cooling
strategies and sustainable measures, which were further explored in Chapter 3. These investments
also make economic sense, as they reduce long-term operating costs. A company might adopt
model compression or more efficient hardware primarily to save money. This illustrates the
synergy between technology, policy, and the economy, as regulation drives technical innovation
while technological advances make it possible to uphold regulatory standards, thus providing
cost benefits for businesses. An integrated view helps balance the trade-offs, which is critical
given the rapid development of AI. Chapter 4 stresses the importance of not hindering the
development of AI. Sometimes, the highest energy efficiency might come at a higher upfront
cost due to investments in development and a sacrifice in performance. Economic analysis helps
determine whether the long-term savings justify the expenditure. Legal frameworks can tip this
balance by either offering subsidies, such as reducing the cost of sustainability, or by making
inefficiencies costlier through penalties or energy prices. Technologically, there might be trade-offs
in performance, presenting the question: how much performance are we willing to trade for
sustainability? This again cycles back to political and ethical questions, e.g. should larger
models be restricted according to their environmental footprint? This thesis strongly advocates
a sustainable approach, presenting different techniques and suggestions throughout the technical,
legal, and economic chapters.

6.1 Synergy Between Technology, Policy and Economics

6.2 Need for Collaboration
This thesis has consistently underscored the importance of collaboration among policymakers,
developers, and business managers in advancing sustainable AI. Policymakers should consult
experts on realistic but ambitious efficiency targets, while business managers should advocate
for and help shape regulations. Decentralised data centres, discussed in Section 4.3, open the
room for public–private collaboration. Integrating excess heat from data centres into public
infrastructure, while offering benefits in return, provides businesses with incentives to pursue
such sustainable practices. Imagine a scenario where a business developing a new AI product
considers using either a massive AI model or a smaller custom model. The technical perspective
showed us that smaller models can be nearly as good but far more efficient. If the legal framework
becomes stricter toward models with higher environmental impact while granting benefits to
those that are more efficient and environmentally friendly, the choice for businesses may become
obvious. This hypothetical illustrates the interlink between technical and legal aspects and how
they affect economic standards.

6.3 Conclusion
This thesis has explored sustainable AI from technical, legal, and economic perspectives. It
began by examining the growing concern over AI’s environmental impact, driven by its rapid
expansion. By defining the concept of sustainable AI, it established the central focus of this
work: the pursuit of efficient, environmentally responsible, and economically viable artificial
intelligence.

Technically, it has examined multiple advancements towards sustainability, ranging from
energy-efficient AI model design and hardware optimisations to model compression techniques
and smart training regimes, drastically reducing the energy consumption of AI systems. Real-
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world examples like DistilBERT and the Zeus framework demonstrate how efficiency gains are
achievable without severely compromising performance. Energy-efficient data centre designs have
also been inspected, as they usually power AI.

Legally, existing and emerging frameworks have been explored, with the EU AI Act being a
pioneer and setting expectations for sustainable AI to become standard practice. A deep dive
into national regulatory frameworks, such as those of Austria and Germany, followed, whereas
the EnEfG in Section 4.1.4 demonstrated how a country can lead with sustainability measures.
Mandating PUE targets, waste heat reuse, and renewable energy puts it at the forefront of
sustainable AI infrastructure. The case study showed the interlink between perspectives: legal
requirements push technical innovation, and in turn, these innovations make compliance feasible.
As the practice of sustainable AI extends beyond just energy efficiency, ethical considerations
have been surveyed, and the ways in which regulators have addressed them have been examined.
However, even through the recent EU AI Act, policies, especially internationally, are still not
complete, as discussed in Section 4.4. A standardised metric for comparing the efficiency of AI
models is still missing, making it difficult for users to differentiate between them in terms of
sustainability. Furthermore, the lack of global coordination of legislation is addressed, as policy
gaps can lead to unsafe and power-hungry AI models.

Economically, incentives have been aligned with sustainable AI. The demand for AI systems
integrated into business services continues to rise, and with it, sustainable decisions are becoming
increasingly important to investors. Companies have started adopting environmentally conscious
practices, as they are not only beneficial for the environment but also offer future-proof infrastruc-
ture for reduced long-term costs. Section 5.2 goes in depth about how sustainable AI operations
can both reduce carbon emissions and operational costs. Sustainable data centre practices, smart
infrastructure, and modern hardware all play a role in reducing power consumption, shrinking
carbon emissions, and, at the same time, saving money. Furthermore, the chapter explores how
sustainable AI fosters technical and strategic innovations, which open the door to new business
opportunities. The final section of the chapter is a macroeconomic overview of business incentives
that policymakers use (or could employ) to guide AI firms towards sustainability. They play a
crucial role in shaping the future of AI, as businesses must comply to avoid fines. Striking the
right balance between penalties and rewards is essential to avoid discouraging competition.

Looking ahead, AI will only increase its presence, and its sustainability will become more
important. It has already undergone enormous development over the course of its lifecycle, with
trends such as generative AI, autonomous driving, smart assistance, and more. If properly guided
by sustainability principles, its environmental impact can either be equalised or at least lead
to efficient growth. Technologically, more efficient solutions can be expected as the Green AI
approach continues to rise and specialised hardware and software are developed. Legally, more
nations will likely implement AI policies, using the AI Act as a basis. The AI Act itself is still in
development, but future generations will possibly already require sustainability requirements.
Internationally, legal standards still need to emerge, but standardised metrics on AI sustainability
measures could be the first step. Economically, businesses will continue to integrate AI into their
operations and services. The more efficiently they use AI, the more cost-effective it will become.

The journey towards sustainable AI is a collective one. This thesis underscores the importance
of a multidisciplinary approach to sustainable AI. Through innovation and efficiency in mind
from technical engineers, guided by appropriate laws from legislation, and fostered by economic
incentives, environmentally friendly and sustainable AI can be achieved. This thesis has shown
that it is not just about mitigating the negatives. It is an opportunity to improve AI technology,
strengthen its efficiency, and responsibly shape the future of AI in society. In conclusion, pursuing
sustainable AI is a necessity for the future of technology, the well-being of humanity, and the
preservation of our planet.
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